13,322 research outputs found

    On Coding the States of Sequential Machines with the Use of Partition Pairs

    Get PDF

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    ROM-Based Finite State Machine Implementation in Low Cost FPGAs

    Get PDF
    This work presents a technique for the resource optimization of input multiplexed ROM-based Finite State Machines. This technique exploits the don't care value of the inputs to reduce the memory size as well as multiplexer complexity. This technique has been applied to a publicly available FSM benchmarks and implemented in a low-cost FPGA. Results have been compared with tools supported ROM and standard logic cells implementations. In a significant number of test cases, the proposed technique is the best design alternative, both in resource requirements and speed

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update

    Interactive Small-Step Algorithms I: Axiomatization

    Full text link
    In earlier work, the Abstract State Machine Thesis -- that arbitrary algorithms are behaviorally equivalent to abstract state machines -- was established for several classes of algorithms, including ordinary, interactive, small-step algorithms. This was accomplished on the basis of axiomatizations of these classes of algorithms. Here we extend the axiomatization and, in a companion paper, the proof, to cover interactive small-step algorithms that are not necessarily ordinary. This means that the algorithms (1) can complete a step without necessarily waiting for replies to all queries from that step and (2) can use not only the environment's replies but also the order in which the replies were received
    • …
    corecore