310 research outputs found

    The significance of bidding, accepting and opponent modeling in automated negotiation

    No full text
    Given the growing interest in automated negotiation, the search for effective strategies has produced a variety of different negotiation agents. Despite their diversity, there is a common structure to their design. A negotiation agent comprises three key components: the bidding strategy, the opponent model and the acceptance criteria. We show that this three-component view of a negotiating architecture not only provides a useful basis for developing such agents but also provides a useful analytical tool. By combining these components in varying ways, we are able to demonstrate the contribution of each component to the overall negotiation result, and thus determine the key contributing components. Moreover, we are able to study the interaction between components and present detailed interaction effects. Furthermore, we find that the bidding strategy in particular is of critical importance to the negotiator's success and far exceeds the importance of opponent preference modeling techniques. Our results contribute to the shaping of a research agenda for negotiating agent design by providing guidelines on how agent developers can spend their time most effectively

    What to bid and when to stop

    No full text
    Negotiation is an important activity in human society, and is studied by various disciplines, ranging from economics and game theory, to electronic commerce, social psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but also time-consuming and expensive activity. Therefore, in the last decades there has been a large interest in the automation of negotiation, for example in the setting of e-commerce. This interest is fueled by the promise of automated agents eventually being able to negotiate on behalf of human negotiators.Every year, automated negotiation agents are improving in various ways, and there is now a large body of negotiation strategies available, all with their unique strengths and weaknesses. For example, some agents are able to predict the opponent's preferences very well, while others focus more on having a sophisticated bidding strategy. The problem however, is that there is little incremental improvement in agent design, as the agents are tested in varying negotiation settings, using a diverse set of performance measures. This makes it very difficult to meaningfully compare the agents, let alone their underlying techniques. As a result, we lack a reliable way to pinpoint the most effective components in a negotiating agent.There are two major advantages of distinguishing between the different components of a negotiating agent's strategy: first, it allows the study of the behavior and performance of the components in isolation. For example, it becomes possible to compare the preference learning component of all agents, and to identify the best among them. Second, we can proceed to mix and match different components to create new negotiation strategies., e.g.: replacing the preference learning technique of an agent and then examining whether this makes a difference. Such a procedure enables us to combine the individual components to systematically explore the space of possible negotiation strategies.To develop a compositional approach to evaluate and combine the components, we identify structure in most agent designs by introducing the BOA architecture, in which we can develop and integrate the different components of a negotiating agent. We identify three main components of a general negotiation strategy; namely a bidding strategy (B), possibly an opponent model (O), and an acceptance strategy (A). The bidding strategy considers what concessions it deems appropriate given its own preferences, and takes the opponent into account by using an opponent model. The acceptance strategy decides whether offers proposed by the opponent should be accepted.The BOA architecture is integrated into a generic negotiation environment called Genius, which is a software environment for designing and evaluating negotiation strategies. To explore the negotiation strategy space of the negotiation research community, we amend the Genius repository with various existing agents and scenarios from literature. Additionally, we organize a yearly international negotiation competition (ANAC) to harvest even more strategies and scenarios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages the design of negotiation strategies and scenarios.We re-implement agents from literature and ANAC and decouple them to fit into the BOA architecture without introducing any changes in their behavior. For each of the three components, we manage to find and analyze the best ones for specific cases, as described below. We show that the BOA framework leads to significant improvements in agent design by wining ANAC 2013, which had 19 participating teams from 8 international institutions, with an agent that is designed using the BOA framework and is informed by a preliminary analysis of the different components.In every negotiation, one of the negotiating parties must accept an offer to reach an agreement. Therefore, it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When contemplating whether to accept an offer, the agent is faced with the acceptance dilemma: accepting the offer may be suboptimal, as better offers may still be presented before time runs out. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. We classify and compare state-of-the-art generic acceptance conditions. We propose new acceptance strategies and we demonstrate that they outperform the other conditions. We also provide insight into why some conditions work better than others and investigate correlations between the properties of the negotiation scenario and the efficacy of acceptance conditions.Later, we adopt a more principled approach by applying optimal stopping theory to calculate the optimal decision on the acceptance of an offer. We approach the decision of whether to accept as a sequential decision problem, by modeling the bids received as a stochastic process. We determine the optimal acceptance policies for particular opponent classes and we present an approach to estimate the expected range of offers when the type of opponent is unknown. We show that the proposed approach is able to find the optimal time to accept, and improves upon all existing acceptance strategies.Another principal component of a negotiating agent's strategy is its ability to take the opponent's preferences into account. The quality of an opponent model can be measured in two different ways. One is to use the agent's performance as a benchmark for the model's quality. We evaluate and compare the performance of a selection of state-of-the-art opponent modeling techniques in negotiation. We provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. We identify a class of simple and surprisingly effective opponent modeling techniques that did not receive much previous attention in literature.The other way to measure the quality of an opponent model is to directly evaluate its accuracy by using similarity measures. We review all methods to measure the accuracy of an opponent model and we then analyze how changes in accuracy translate into performance differences. Moreover, we pinpoint the best predictors for good performance. This leads to new insights concerning how to construct an opponent model, and what we need to measure when optimizing performance.Finally, we take two different approaches to gain more insight into effective bidding strategies. We present a new classification method for negotiation strategies, based on their pattern of concession making against different kinds of opponents. We apply this technique to classify some well-known negotiating strategies, and we formulate guidelines on how agents should bid in order to be successful, which gives insight into the bidding strategy space of negotiating agents. Furthermore, we apply optimal stopping theory again, this time to find the concessions that maximize utility for the bidder against particular opponents. We show there is an interesting connection between optimal bidding and optimal acceptance strategies, in the sense that they are mirrored versions of each other.Lastly, after analyzing all components separately, we put the pieces back together again. We take all BOA components accumulated so far, including the best ones, and combine them all together to explore the space of negotiation strategies.We compute the contribution of each component to the overall negotiation result, and we study the interaction between components. We find that combining the best agent components indeed makes the strongest agents. This shows that the component-based view of the BOA architecture not only provides a useful basis for developing negotiating agents but also provides a useful analytical tool. By varying the BOA components we are able to demonstrate the contribution of each component to the negotiation result, and thus analyze the significance of each. The bidding strategy is by far the most important to consider, followed by the acceptance conditions and finally followed by the opponent model.Our results validate the analytical approach of the BOA framework to first optimize the individual components, and then to recombine them into a negotiating agent

    Incorporating Fairness into Development of an Integrated Multi-agent Online Dispute Resolution Environment

    Get PDF
    The paper describes the development of an integrated multi-agent online dispute resolution environment called IMODRE that was designed to assist parties involved in Australian family law disputes achieve legally fairer negotiated outcomes. The system extends our previouswork in developing negotiation support systems Family_ Winner and AssetDivider. In this environment one agent uses a Bayesian Belief Network expertly modeled with knowledge of the Australian Family Law domain to advise disputants of their Best Alternatives to Negotiated Agreements. Another agent incorporates the percentage split of marital property into an integrative bargaining process and applies heuristics and game theory to equitably distribute marital property assets and facilitate further trade-offs. We use this system to add greater fairness to Family property law negotiations

    Evaluating practical negotiating agents: Results and analysis of the 2011 international competition

    Get PDF
    This paper presents an in-depth analysis and the key insights gained from the Second International Automated Negotiating Agents Competition (ANAC 2011). ANAC is an international competition that challenges researchers to develop successful automated negotiation agents for scenarios where there is no information about the strategies and preferences of the opponents. The key objectives of this competition are to advance the state-of-the-art in the area of practical bilateral multi-issue negotiations, and to encourage the design of agents that are able to operate effectively across a variety of scenarios. Eighteen teams from seven different institutes competed. This paper describes these agents, the setup of the tournament, including the negotiation scenarios used, and the results of both the qualifying and final rounds of the tournament. We then go on to analyse the different strategies and techniques employed by the participants using two methods: (i) we classify the agents with respect to their concession behaviour against a set of standard benchmark strategies and (ii) we employ empirical game theory (EGT) to investigate the robustness of the strategies. Our analysis of the competition results allows us to highlight several interesting insights for the broader automated negotiation community. In particular, we show that the most adaptive negotiation strategies, while robu

    Human-Machine Cooperative Decision Making

    Get PDF
    The research reported in this thesis focuses on the decision making aspect of human-machine cooperation and reveals new insights from theoretical modeling to experimental evaluations: Two mathematical behavior models of two emancipated cooperation partners in a cooperative decision making process are introduced. The model-based automation designs are experimentally evaluated and thereby demonstrate their benefits compared to state-of-the-art approaches

    Human-Machine Cooperative Decision Making

    Get PDF
    Diese Dissertation beschĂ€ftigt sich mit der gemeinsamen Entscheidungsfindung in der Mensch-Maschine-Kooperation und liefert neue Erkenntnisse, welche von der theoretischen Modellierung bis zu experimentellen Untersuchungen reichen. ZunĂ€chst wird eine methodische Klassifikation bestehender Forschung zur Mensch-Maschine-Kooperation vorgenommen und der Forschungsfokus dieser Dissertation mithilfe eines vorgestellten Taxonomiemodells der Mensch-Maschine-Kooperation, dem Butterfly-Modell, abgegrenzt. Darauffolgend stellt die Dissertation zwei mathematische Verhaltensmodelle der gemeinsamen Entscheidungsfindung von Mensch und Maschine vor: das Adaptive Verhandlungsmodell und den n-stufigen War of Attrition. Beide modellieren den Einigungsprozess zweier emanzipierter Kooperationspartner und unterscheiden sich hinsichtlich ihrer UrsprĂŒnge, welche in der Verhandlungs- beziehungsweise Spieltheorie liegen. ZusĂ€tzlich wird eine Studie vorgestellt, die die Eignung der vorgeschlagenen mathematischen Modelle zur Beschreibung des menschlichen Nachgebeverhaltens in kooperativen Entscheidungsfindungs-Prozessen nachweist. Darauf aufbauend werden zwei modellbasierte Automationsdesigns bereitgestellt, welche die Entwicklung von Maschinen ermöglichen, die an einem Einigungsprozess mit einem Menschen teilnehmen können. Zuletzt werden zwei experimentelle Untersuchungen der vorgeschlagenen Automationsdesigns im Kontext von teleoperierten mobilen Robotern in Such- und Rettungsszenarien und anhand einer Anwendung in einem hochautomatisierten Fahrzeug prĂ€sentiert. Die experimentellen Ergebnisse liefern empirische Evidenz fĂŒr die Überlegenheit der vorgestellten modellbasierten Automationsdesigns gegenĂŒber den bisherigen AnsĂ€tzen in den Aspekten der objektiven kooperativen Performanz, des menschlichen Vertrauens in die Interaktion mit der Maschine und der Nutzerzufriedenheit. So zeigt diese Dissertation, dass Menschen eine emanzipierte Interaktion mit Bezug auf die Entscheidungsfindung bevorzugen, und leistet einen wertvollen Beitrag zur vollumfĂ€nglichen Betrachtung und Verwirklichung von Mensch-Maschine-Kooperationen

    Managing negotiation knowledge with the goal of developing negotiation decision support systems

    Get PDF
    While Information Technology has been used to support negotiation there is little research in the domain of knowledge management in legal negotiation. In this paper we discuss the nature of negotiation knowledge and how such knowledge can be utilized to construct negotiation decision support systems. We conduct an in-depth examination of the notion of a BATNA (Best Alternative to a Negotiated Agreement) and given a useful BATNA, how we can use issue and preference elicitation and compensation and trade-off strategies to provide negotiation decision support. We conclude by indicating how current negotiation support systems can be extended to support Online Dispute Resolution and haw we can extend the Family_Winner system in light of the need to more adequately manage negotiation knowledge.<br /

    Human-Machine Cooperative Decision Making

    Get PDF
    The research reported in this thesis focuses on the decision making aspect of human-machine cooperation and reveals new insights from theoretical modeling to experimental evaluations: Two mathematical behavior models of two emancipated cooperation partners in a cooperative decision making process are introduced. The model-based automation designs are experimentally evaluated and thereby demonstrate their benefits compared to state-of-the-art approaches
    • 

    corecore