4,194 research outputs found

    Decoding by Embedding: Correct Decoding Radius and DMT Optimality

    Get PDF
    The closest vector problem (CVP) and shortest (nonzero) vector problem (SVP) are the core algorithmic problems on Euclidean lattices. They are central to the applications of lattices in many problems of communications and cryptography. Kannan's \emph{embedding technique} is a powerful technique for solving the approximate CVP, yet its remarkable practical performance is not well understood. In this paper, the embedding technique is analyzed from a \emph{bounded distance decoding} (BDD) viewpoint. We present two complementary analyses of the embedding technique: We establish a reduction from BDD to Hermite SVP (via unique SVP), which can be used along with any Hermite SVP solver (including, among others, the Lenstra, Lenstra and Lov\'asz (LLL) algorithm), and show that, in the special case of LLL, it performs at least as well as Babai's nearest plane algorithm (LLL-aided SIC). The former analysis helps to explain the folklore practical observation that unique SVP is easier than standard approximate SVP. It is proven that when the LLL algorithm is employed, the embedding technique can solve the CVP provided that the noise norm is smaller than a decoding radius λ1/(2γ)\lambda_1/(2\gamma), where λ1\lambda_1 is the minimum distance of the lattice, and γ≈O(2n/4)\gamma \approx O(2^{n/4}). This substantially improves the previously best known correct decoding bound γ≈O(2n)\gamma \approx {O}(2^{n}). Focusing on the applications of BDD to decoding of multiple-input multiple-output (MIMO) systems, we also prove that BDD of the regularized lattice is optimal in terms of the diversity-multiplexing gain tradeoff (DMT), and propose practical variants of embedding decoding which require no knowledge of the minimum distance of the lattice and/or further improve the error performance.Comment: To appear in IEEE Transactions on Information Theor

    Depleted pyrochlore antiferromagnets

    Full text link
    I consider the class of "depleted pyrochlore" lattices of corner-sharing triangles, made by removing spins from a pyrochlore lattice such that every tetrahedron loses exactly one. Previously known examples are the "hyperkagome" and "kagome staircase". I give criteria in terms of loops for whether a given depleted lattice can order analogous to the kagome \sqrt{3} \times \sqrt{three} state, and also show how the pseudo-dipolar correlations (due to local constraints) generalize to even the random depleted case.Comment: 6pp IOP latex, 1 figure; Proc. "Highly Frustrated Magnetism 2008", Sept 2008, Braunschwei

    The Geometry of Niggli Reduction II: BGAOL -- Embedding Niggli Reduction

    Full text link
    Niggli reduction can be viewed as a series of operations in a six-dimensional space derived from the metric tensor. An implicit embedding of the space of Niggli-reduced cells in a higher dimensional space to facilitate calculation of distances between cells is described. This distance metric is used to create a program, BGAOL, for Bravais lattice determination. Results from BGAOL are compared to the results from other metric-based Bravais lattice determination algorithms
    • …
    corecore