15,659 research outputs found

    Magnetic Reconnection and Turbulent Mixing: From ISM to Clusters of Galaxies

    Full text link
    Magnetic reconnection, or the ability of the magnetic field lines that are frozen in plasma to change their topology, is a fundamental problem of magnetohydrodynamics (MHD). We briefly examine the problem starting with the well-known Sweet-Parker scheme, discuss effects of tearing modes, anomalous resistivity and the concept of hyperresistivity. We show that the field stochasticity by itself provides a way to enable fast reconnection even if, at the scale of individual turbulent wiggles, the reconnection happens at the slow Sweet-Parker rate. We show that fast reconnection allows efficient mixing of magnetic field in the direction perpendicular to the local direction of magnetic field. While the idea of stochastic reconnection still requires numerical confirmation, our numerical simulations testify that mixing motions perpendicular to the local magnetic field are up to high degree hydrodynamical. This suggests that the turbulent heat transport should be similar to that in non-magnetized turbulent fluid, namely, should have a diffusion coefficient \sim LV_L, where V_L is the amplitude of the turbulent velocity and L is the scale of the turbulent motions. We present numerical simulations which support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent cooling flow formation.Comment: 12 pages, 2 figures, invited talk at JENAM2002 - The Unsolved Universe:Challenges for the Future (v2: minor changes

    Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations

    Full text link
    We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the free-standing silicene with the line defect originating from the reversed buckled phases.Comment: 36 pages, 13 figures, 2 table

    Resolving the fine-scale structure in turbulent Rayleigh-Benard convection

    Get PDF
    We present high-resolution direct numerical simulation studies of turbulent Rayleigh-Benard convection in a closed cylindrical cell with an aspect ratio of one. The focus of our analysis is on the finest scales of convective turbulence, in particular the statistics of the kinetic energy and thermal dissipation rates in the bulk and the whole cell. The fluctuations of the energy dissipation field can directly be translated into a fluctuating local dissipation scale which is found to develop ever finer fluctuations with increasing Rayleigh number. The range of these scales as well as the probability of high-amplitude dissipation events decreases with increasing Prandtl number. In addition, we examine the joint statistics of the two dissipation fields and the consequences of high-amplitude events. We also have investigated the convergence properties of our spectral element method and have found that both dissipation fields are very sensitive to insufficient resolution. We demonstrate that global transport properties, such as the Nusselt number, and the energy balances are partly insensitive to insufficient resolution and yield correct results even when the dissipation fields are under-resolved. Our present numerical framework is also compared with high-resolution simulations which use a finite difference method. For most of the compared quantities the agreement is found to be satisfactory.Comment: 33 pages, 24 figure

    Fornax: a Flexible Code for Multiphysics Astrophysical Simulations

    Full text link
    This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focusing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-collapse supernova problem for which Fornax is primarily intended, we present here classical and rigorous demonstrations of code performance relevant to a broad range of multi-dimensional hydrodynamic and multi-group radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1 closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this end, we first describe the philosophy, algorithms, and methodologies of Fornax and then perform numerous stringent code tests, that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling well above 100k MPI tasks.Comment: Accepted to the Astrophysical Journal Supplement Series; A few more textual and reference updates; As before, one additional code test include

    On the Divergence-Free Condition in Godunov-Type Schemes for Ideal Magnetohydrodynamics: the Upwind Constrained Transport Method

    Full text link
    We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the 'Constrained Transport' (CT) discretization technique for the magnetic field components, originally developed for the linear induction equation, which assures div(B)=0 and its preservation in time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of O(1) size, and to formulate approximate Riemann solvers for the induction equation. This general framework will be named here 'Upwind Constrained Transport' (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which are finally validated numerically and compared: a novel implementation for the MHD case of the second order Roe-type positive scheme by Liu and Lax (J. Comp. Fluid Dynam. 5, 133, 1996), and both the second and third order versions of a central-type MHD scheme presented by Londrillo and Del Zanna (Astrophys. J. 530, 508, 2000), where the basic UCT strategies have been first outlined
    corecore