16,774 research outputs found

    A robust fuzzy possibilistic AHP approach for partner selection in international strategic alliance

    Get PDF
    The international strategic alliance is an inevitable solution for making competitive advantage and reducing the risk in today’s business environment. Partner selection is an important part in success of partnerships, and meanwhile it is a complicated decision because of various dimensions of the problem and inherent conflicts of stockholders. The purpose of this paper is to provide a practical approach to the problem of partner selection in international strategic alliances, which fulfills the gap between theories of inter-organizational relationships and quantitative models. Thus, a novel Robust Fuzzy Possibilistic AHP approach is proposed for combining the benefits of two complementary theories of inter-organizational relationships named, (1) Resource-based view, and (2) Transaction-cost theory and considering Fit theory as the perquisite of alliance success. The Robust Fuzzy Possibilistic AHP approach is a noveldevelopment of Interval-AHP technique employing robust formulation; aimed at handling the ambiguity of the problem and let the use of intervals as pairwise judgments. The proposed approach was compared with existing approaches, and the results show that it provides the best quality solutions in terms of minimum error degree. Moreover, the framework implemented in a case study and its applicability were discussed

    Developing an Overbooking Fuzzy-Based Mathematical Optimization Model for Multi-Leg Flights

    Get PDF
    Overbooking is one of the most vital revenue management practices that is used in the airline industry. Identification of an overbooking level is a challenging task due to the uncertainties associated with external factors, such as demand for tickets, and inappropriate overbooking levels which may cause revenue losses as well as loss of reputation and customer loyalty. Therefore, the aim of this paper is to propose a fuzzy linear programming model and Genetic Algorithms (GAs) to maximize the overall revenue of a large-scale multi-leg flight network by minimizing the number of empty seats and the number of denied passengers. A fuzzy logic technique is used for modeling the fuzzy demand on overbooking flight tickets and a metaheuristics-based GA technique is adopted to solve large-scale multi-leg flights problem. As part of model verification, the proposed GA is applied to solve a small multi-leg flight linear programming model with a fuzzified demand factor. In addition, experimentation with large-scale problems with different input parameters’ settings such as penalty rate, show-up rate and demand level are also conducted to understand the behavior of the developed model. The validation results show that the proposed GA produces almost identical results to those in a small-scale multi-leg flight problem. In addition, the performance of the large-scale multi-leg flight network represented by a number of KPIs including total booking, denied passengers and net-overbooking profit towards changing these input parameters will also be revealed

    A STOCHASTIC SIMULATION-BASED HYBRID INTERVAL FUZZY PROGRAMMING APPROACH FOR OPTIMIZING THE TREATMENT OF RECOVERED OILY WATER

    Get PDF
    In this paper, a stochastic simulation-based hybrid interval fuzzy programming (SHIFP) approach is developed to aid the decision-making process by solving fuzzy linear optimization problems. Fuzzy set theory, probability theory, and interval analysis are integrated to take into account the effect of imprecise information, subjective judgment, and variable environmental conditions. A case study related to oily water treatment during offshore oil spill clean-up operations is conducted to demonstrate the applicability of the proposed approach. The results suggest that producing a random sequence of triangular fuzzy numbers in a given interval is equivalent to a normal distribution when using the centroid defuzzification method. It also shows that the defuzzified optimal solutions follow the normal distribution and range from 3,000-3,700 tons, given the budget constraint (CAD 110,000-150,000). The normality seems to be able to propagate throughout the optimization process, yet this interesting finding deserves more in-depth study and needs more rigorous mathematical proof to validate its applicability and feasibility. In addition, the optimal decision variables can be categorized into several groups with different probability such that decision makers can wisely allocate limited resources with higher confidence in a short period of time. This study is expected to advise the industries and authorities on how to distribute resources and maximize the treatment efficiency of oily water in a short period of time, particularly in the context of harsh environments

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Nonlinear modelling and optimal control via Takagi-Sugeno fuzzy techniques: A quadrotor stabilization

    Get PDF
    Using the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and a new type of its fitness function is proposed to improve the closed-loop system performance.Web of Science71110
    corecore