2,882 research outputs found

    MemoryLane: An intelligent mobile companion for elderly users

    Get PDF

    PLTOOL: a knowledge engineering tool for planning and learning

    Get PDF
    Artificial intelligence (AI) planning solves the problem of generating a correct and efficient ordered set of instantiated activities, from a knowledge base of generic actions, which when executed will transform some initial state into some desirable end-state. There is a long tradition of work in AI for developing planners that make use of heuristics that are shown to improve their performance in many real world and artificial domains. The developers of planners have chosen between two extremes when defining those heuristics. The domain-independent planners use domain-independent heuristics, which exploit information only from the ‘syntactic’ structure of the problem space and of the search tree. Therefore, they do not need any ‘semantic’ information from a given domain in order to guide the search. From a knowledge engineering (KE) perspective, the planners that use this type of heuristics have the advantage that the users of this technology need only focus on defining the domain theory and not on defining how to make the planner efficient (how to obtain ‘good’ solutions with the minimal computational resources). However, the domain-dependent planners require users to manually represent knowledge not only about the domain theory, but also about how to make the planner efficient. This approach has the advantage of using either better domain-theory formulations or using domain knowledge for defining the heuristics, thus potentially making them more efficient. However, the efficiency of these domain-dependent planners strongly relies on the KE and planning expertise of the user. When the user is an expert on these two types of knowledge, domain-dependent planners clearly outperform domain-independent planners in terms of number of solved problems and quality of solutions. Machine-learning (ML) techniques applied to solve the planning problems have focused on providing middle-ground solutions as compared to the aforementioned two extremes. Here, the user first defines a domain theory, and then executes the ML techniques that automatically modify or generate new knowledge with respect to both the domain theory and the heuristics. In this paper, we present our work on building a tool, PLTOOL (planning and learning tool), to help users interact with a set of ML techniques and planners. The goal is to provide a KE framework for mixed-initiative generation of efficient and good planning knowledge.This work has been partially supported by the Spanish MCyT project TIC2002-04146-C05-05, MEC project TIN2005-08945-C06-05 and regional CAM-UC3M project UC3M-INF-05-016.Publicad

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances

    Automated Refugee Case Analysis: An NLP Pipeline for Supporting Legal Practitioners

    Full text link
    In this paper, we introduce an end-to-end pipeline for retrieving, processing, and extracting targeted information from legal cases. We investigate an under-studied legal domain with a case study on refugee law in Canada. Searching case law for past similar cases is a key part of legal work for both lawyers and judges, the potential end-users of our prototype. While traditional named-entity recognition labels such as dates provide meaningful information in legal work, we propose to extend existing models and retrieve a total of 19 useful categories of items from refugee cases. After creating a novel data set of cases, we perform information extraction based on state-of-the-art neural named-entity recognition (NER). We test different architectures including two transformer models, using contextual and non-contextual embeddings, and compare general purpose versus domain-specific pre-training. The results demonstrate that models pre-trained on legal data perform best despite their smaller size, suggesting that domain matching had a larger effect than network architecture. We achieve a F1 score above 90% on five of the targeted categories and over 80% on four further categories.Comment: 9 pages, preprint of long paper accepted to Findings of the Annual Meeting of the Association for Computational Linguistics (ACL) 202

    Artificially Intelligent Copyright: Rethinking Copyright Boundaries

    Get PDF
    My dissertation explores the legal boundaries of copyright law in the wake of artificial intelligence (AI) technology. In building the theoretical foundations for my dissertation, I go through several key phases. First, I highlight important historical events and milestones in AI. I further develop the philosophical debate on AI legal personhood and deliberate whether we are approaching a singularity the next stage of AI evolution. I also explore the concept of AI as it matured through the years. In the second part, I theorize how AI can be regarded as an author under IP normative standards. Part of accepting the argument that AI deserve copyright is a willingness to change the perception that only human creations are worthy of copyright protection. I also seek an answer to two sub-questions the who and the what. The who considers the normative standards of authorship in the ongoing struggle between an authors right and the public domain. The what raise the originality debate and discusses the standard of creation. In the third part, I outline the many candidates for AI authorship the programmer, the user, the AI and an alternative legal framework for AIs ownership like the public domain or author-in-law. Finally, I discuss the outcomes of each model and provide my conclusions
    • …
    corecore