648 research outputs found

    On the distance between the expressions of a permutation

    Get PDF
    We prove that the combinatorial distance between any two reduced expressions of a given permutation of {1, ..., n} in terms of transpositions lies in O(n^4), a sharp bound. Using a connection with the intersection numbers of certain curves in van Kampen diagrams, we prove that this bound is sharp, and give a practical criterion for proving that the derivations provided by the reversing algorithm of [Dehornoy, JPAA 116 (1997) 115-197] are optimal. We also show the existence of length l expressions whose reversing requires C l^4 elementary steps

    Partial-indistinguishability obfuscation using braids

    Get PDF
    An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mainly been limited to no-go results. Recent works have proposed the first efficient obfuscation algorithms for classical logic circuits, based on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions. We describe universal gate sets for both classical and quantum computation, in which our definition of obfuscation can be met by polynomial-time algorithms. We also discuss some potential applications to testing quantum computers. We stress that the cryptographic security of these obfuscators, especially when composed with translation from other gate sets, remains an open question.Comment: 21 pages,Proceedings of TQC 201

    Composition problems for braids: Membership, Identity and Freeness

    Get PDF
    In this paper we investigate the decidability and complexity of problems related to braid composition. While all known problems for a class of braids with three strands, B3B_3, have polynomial time solutions we prove that a very natural question for braid composition, the membership problem, is NP-complete for braids with only three strands. The membership problem is decidable in NP for B3B_3, but it becomes harder for a class of braids with more strands. In particular we show that fundamental problems about braid compositions are undecidable for braids with at least five strands, but decidability of these problems for B4B_4 remains open. Finally we show that the freeness problem for semigroups of braids from B3B_3 is also decidable in NP. The paper introduces a few challenging algorithmic problems about topological braids opening new connections between braid groups, combinatorics on words, complexity theory and provides solutions for some of these problems by application of several techniques from automata theory, matrix semigroups and algorithms

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    On definite strongly quasipositive links and L-space branched covers

    Full text link
    We investigate the problem of characterising the family of strongly quasipositive links which have definite symmetrised Seifert forms and apply our results to the problem of determining when such a link can have an L-space cyclic branched cover. In particular, we show that if δn=σ1σ2…σn−1\delta_n = \sigma_1 \sigma_2 \ldots \sigma_{n-1} is the dual Garside element and b=δnkP∈Bnb = \delta_n^k P \in B_n is a strongly quasipositive braid whose braid closure b^\widehat b is definite, then k≥2k \geq 2 implies that b^\widehat b is one of the torus links T(2,q),T(3,4),T(3,5)T(2, q), T(3,4), T(3,5) or pretzel links P(−2,2,m),P(−2,3,4)P(-2, 2, m), P(-2,3,4). Applying Theorem 1.1 of our previous paper we deduce that if one of the standard cyclic branched covers of b^\widehat b is an L-space, then b^\widehat b is one of these links. We show by example that there are strongly quasipositive braids δnP\delta_n P whose closures are definite but not one of these torus or pretzel links. We also determine the family of definite strongly quasipositive 33-braids and show that their closures coincide with the family of strongly quasipositive 33-braids with an L-space branched cover.Comment: 62 pages, minor revisions, accepted for publication in Adv. Mat

    Braids: A Survey

    Full text link
    This article is about Artin's braid group and its role in knot theory. We set ourselves two goals: (i) to provide enough of the essential background so that our review would be accessible to graduate students, and (ii) to focus on those parts of the subject in which major progress was made, or interesting new proofs of known results were discovered, during the past 20 years. A central theme that we try to develop is to show ways in which structure first discovered in the braid groups generalizes to structure in Garside groups, Artin groups and surface mapping class groups. However, the literature is extensive, and for reasons of space our coverage necessarily omits many very interesting developments. Open problems are noted and so-labelled, as we encounter them.Comment: Final version, revised to take account of the comments of readers. A review article, to appear in the Handbook of Knot Theory, edited by W. Menasco and M. Thistlethwaite. 91 pages, 24 figure
    • …
    corecore