4,033 research outputs found

    Serendipity and Tensor Product Affine Pyramid Finite Elements

    Get PDF
    Using the language of finite element exterior calculus, we define two families of H1H^1-conforming finite element spaces over pyramids with a parallelogram base. The first family has matching polynomial traces with tensor product elements on the base while the second has matching polynomial traces with serendipity elements on the base. The second family is new to the literature and provides a robust approach for linking between Lagrange elements on tetrahedra and serendipity elements on affinely-mapped cubes while preserving continuity and approximation properties. We define shape functions and degrees of freedom for each family and prove unisolvence and polynomial reproduction results.Comment: Accepted to SMAI Journal of Computational Mathematic

    Finite element differential forms on cubical meshes

    Full text link
    We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.Comment: v2: as accepted by Mathematics of Computation after minor revisions; v3: this version corresponds to the final version for Math. Comp., after copyediting and galley proof

    Nodal bases for the serendipity family of finite elements

    Full text link
    Using the notion of multivariate lower set interpolation, we construct nodal basis functions for the serendipity family of finite elements, of any order and any dimension. For the purpose of computation, we also show how to express these functions as linear combinations of tensor-product polynomials.Comment: Pre-print of version that will appear in Foundations of Computational Mathematic

    Computational Serendipity and Tensor Product Finite Element Differential Forms

    Get PDF
    Many conforming finite elements on squares and cubes are elegantly classified into families by the language of finite element exterior calculus and presented in the Periodic Table of the Finite Elements. Use of these elements varies, based principally on the ease or difficulty in finding a "computational basis" of shape functions for element families. The tensor product family, Qr−ΛkQ^-_r\Lambda^k, is most commonly used because computational basis functions are easy to state and implement. The trimmed and non-trimmed serendipity families, Sr−ΛkS^-_r\Lambda^k and SrΛkS_r\Lambda^k respectively, are used less frequently because they are newer to the community and, until now, lacked a straightforward technique for computational basis construction. This represents a missed opportunity for computational efficiency as the serendipity elements in general have fewer degrees of freedom than elements of equivalent accuracy from the tensor product family. Accordingly, in pursuit of easy adoption of the serendipity families, we present complete lists of computational bases for both serendipity families, for any order r≥1r\geq 1 and for any differential form order 0≤k≤n0\leq k\leq n, for problems in dimension n=2n=2 or 33. The bases are defined via shared subspace structures, allowing easy comparison of elements across families. We use and include code in SageMath to find, list, and verify these computational basis functions.Comment: 19 page manuscript; 8 page appendix. Code available at http://math.arizona.edu/~agillette/research/computationalBases

    Efficient finite element analysis using graph-theoretical force method; rectangular plane stress and plane strain serendipity family elements

    Get PDF
    Formation of a suitable null basis for equilibrium matrix is the main part of finite elements analysis via force method. Foran optimal analysis, the selected null basis matrices should be sparse and banded corresponding to produce sparse, banded and well-conditioned flexibility matrices. In this paper, an efficient method is developed for the formation of null bases of finite element models (FEMs) consisting of rectangular plane stress and plane strain serendipity family elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems (SESs) on these subgraphs. The efficiency of the present method is illustrated through three examples

    Trimmed Serendipity Finite Element Differential Forms

    Full text link
    We introduce the family of trimmed serendipity finite element differential form spaces, defined on cubical meshes in any number of dimensions, for any polynomial degree, and for any form order. The relation between the trimmed serendipity family and the (non-trimmed) serendipity family developed by Arnold and Awanou [Math. Comp. 83(288) 2014] is analogous to the relation between the trimmed and (non-trimmed) polynomial finite element differential form families on simplicial meshes from finite element exterior calculus. We provide degrees of freedom in the general setting and prove that they are unisolvent for the trimmed serendipity spaces. The sequence of trimmed serendipity spaces with a fixed polynomial order r provides an explicit example of a system described by Christiansen and Gillette [ESAIM:M2AN 50(3) 2016], namely, a minimal compatible finite element system on squares or cubes containing order r-1 polynomial differential forms.Comment: Improved results, detailed comparison to prior and contemporary work, and further explanation of computational benefits have been added since the original version. This version has been accepted for publication in Mathematics of Computatio

    Serendipity Nodal VEM spaces

    Full text link
    We introduce a new variant of Nodal Virtual Element spaces that mimics the "Serendipity Finite Element Methods" (whose most popular example is the 8-node quadrilateral) and allows to reduce (often in a significant way) the number of internal degrees of freedom. When applied to the faces of a three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral decompositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization of the simplicial case
    • …
    corecore