114 research outputs found

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    National Natural Science Foundation of China (11101248, 71101140), Shandong Province Natural Science Foundation (ZR2010AQ026), and Young Teacher

    Get PDF
    Abstract. In this paper, we deal with the semi-infinite complementarity problems (SICP), in which several important issues are covered, such as solvability, semismoothness of residual functions, and error bounds. In particular, we characterize the solution set by investigating the relationship between SICP and the classical complementarity problem. 1 Furthermore, we show that the SICP can be equivalently reformulated as a typical semiinfinite min-max programming problem by employing NCP functions. Finally, we study the concept of error bounds and introduce its two variants, ε-error bounds and weak error bounds, where the concept of weak error bounds is highly desirable in that the solution set is not restricted to be nonempty. Key words. semi-infinite complementarity problem, semidifferentiable and semismooth, error bounds, weak error bounds

    Interior Point Methods and Preconditioning for PDE-Constrained Optimization Problems Involving Sparsity Terms

    Get PDF
    PDE-constrained optimization problems with control or state constraints are challenging from an analytical as well as numerical perspective. The combination of these constraints with a sparsity-promoting L1\rm L^1 term within the objective function requires sophisticated optimization methods. We propose the use of an Interior Point scheme applied to a smoothed reformulation of the discretized problem, and illustrate that such a scheme exhibits robust performance with respect to parameter changes. To increase the potency of this method we introduce fast and efficient preconditioners which enable us to solve problems from a number of PDE applications in low iteration numbers and CPU times, even when the parameters involved are altered dramatically

    Complete Characterizations of Local Weak Sharp Minima With Applications to Semi-Infinite Optimization and Complementarity

    Get PDF
    In this paper we identify a favorable class of nonsmooth functions for which local weak sharp minima can be completely characterized in terms of normal cones and subdifferentials, or tangent cones and subderivatives, or their mixture in finite-dimensional spaces. The results obtained not only significantly extend previous ones in the literature, but also allow us to provide new types of criteria for local weak sharpness. Applications of the developed theory are given to semi-infinite programming and to semi-infinite complementarity problems

    Morceaux Choisis en Optimisation Continue et sur les Systèmes non Lisses

    Get PDF
    MasterThis course starts with the presentation of the optimality conditions of an optimization problem described in a rather abstract manner, so that these can be useful for dealing with a large variety of problems. Next, the course describes and analyzes various advanced algorithms to solve optimization problems (nonsmooth methods, linearization methods, proximal and augmented Lagrangian methods, interior point methods) and shows how they can be used to solve a few classical optimization problems (linear optimization, convex quadratic optimization, semidefinite optimization (SDO), nonlinear optimization). Along the way, various tools from convex and nonsmooth analysis will be presented. Everything is conceptualized in finite dimension. The goal of the lectures is therefore to consolidate basic knowledge in optimization, on both theoretical and algorithmic aspects

    A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization

    Full text link
    We propose a novel trust region method for solving a class of nonsmooth and nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka-{\L}ojasiewicz (KL) inequality yielding finer convergence results. We further derive new normal map-based representations of the associated second-order optimality conditions that have direct connections to the local assumptions required for fast convergence. Finally, we study the behavior of our algorithm when the Hessian matrix of the smooth part of the objective function is approximated by BFGS updates. We successfully link the KL theory, properties of the BFGS approximations, and a Dennis-Mor{\'e}-type condition to show superlinear convergence of the quasi-Newton version of our method. Numerical experiments on sparse logistic regression and image compression illustrate the efficiency of the proposed algorithm.Comment: 56 page

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research
    corecore