105 research outputs found

    KGrEaT: A Framework to Evaluate Knowledge Graphs via Downstream Tasks

    Full text link
    In recent years, countless research papers have addressed the topics of knowledge graph creation, extension, or completion in order to create knowledge graphs that are larger, more correct, or more diverse. This research is typically motivated by the argumentation that using such enhanced knowledge graphs to solve downstream tasks will improve performance. Nonetheless, this is hardly ever evaluated. Instead, the predominant evaluation metrics - aiming at correctness and completeness - are undoubtedly valuable but fail to capture the complete picture, i.e., how useful the created or enhanced knowledge graph actually is. Further, the accessibility of such a knowledge graph is rarely considered (e.g., whether it contains expressive labels, descriptions, and sufficient context information to link textual mentions to the entities of the knowledge graph). To better judge how well knowledge graphs perform on actual tasks, we present KGrEaT - a framework to estimate the quality of knowledge graphs via actual downstream tasks like classification, clustering, or recommendation. Instead of comparing different methods of processing knowledge graphs with respect to a single task, the purpose of KGrEaT is to compare various knowledge graphs as such by evaluating them on a fixed task setup. The framework takes a knowledge graph as input, automatically maps it to the datasets to be evaluated on, and computes performance metrics for the defined tasks. It is built in a modular way to be easily extendable with additional tasks and datasets.Comment: Accepted for the Short Paper track of CIKM'23, October 21-25, 2023, Birmingham, United Kingdo

    Schema First! Learn Versatile Knowledge Graph Embeddings by Capturing Semantics with MASCHInE

    Full text link
    Knowledge graph embedding models (KGEMs) have gained considerable traction in recent years. These models learn a vector representation of knowledge graph entities and relations, a.k.a. knowledge graph embeddings (KGEs). Learning versatile KGEs is desirable as it makes them useful for a broad range of tasks. However, KGEMs are usually trained for a specific task, which makes their embeddings task-dependent. In parallel, the widespread assumption that KGEMs actually create a semantic representation of the underlying entities and relations (e.g., project similar entities closer than dissimilar ones) has been challenged. In this work, we design heuristics for generating protographs -- small, modified versions of a KG that leverage schema-based information. The learnt protograph-based embeddings are meant to encapsulate the semantics of a KG, and can be leveraged in learning KGEs that, in turn, also better capture semantics. Extensive experiments on various evaluation benchmarks demonstrate the soundness of this approach, which we call Modular and Agnostic SCHema-based Integration of protograph Embeddings (MASCHInE). In particular, MASCHInE helps produce more versatile KGEs that yield substantially better performance for entity clustering and node classification tasks. For link prediction, using MASCHInE has little impact on rank-based performance but increases the number of semantically valid predictions

    Trust, Accountability, and Autonomy in Knowledge Graph-based AI for Self-determination

    Full text link
    Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning: How can the output of AI systems be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives

    Entities with quantities : extraction, search, and ranking

    Get PDF
    Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search.Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von Entitäten wie die Höhe von Gebäuden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrückt durch Zahlen mit zugehörigen Einheiten. Entitätszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen häufig gut unterstützt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von über 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, Quantitäten, einschließlich der genannten Bedingungen (weniger als, über, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. In dieser Dissertation werden neue Methoden entwickelt, um den Stand der Technik zur Wissensextraktion und -suche von Quantitäten voranzutreiben. Unsere Hauptbeiträge sind die folgenden: • Zunächst präsentieren wir Qsearch [Ho et al., 2019, Ho et al., 2020] – ein System, das mit erweiterten Fragen mit Quantitätsfiltern umgehen kann, indem es Hinweise verwendet, die sowohl in der Frage als auch in den Textquellen vorhanden sind. Qsearch umfasst zwei Hauptbeiträge. Der erste Beitrag ist ein tiefes neuronales Netzwerkmodell, das für die Extraktion quantitätszentrierter Tupel aus Textquellen entwickelt wurde. Der zweite Beitrag ist ein neuartiges Query-Matching-Modell zum Finden und zur Reihung passender Tupel. • Zweitens, um beim Vorgang heterogene Tabellen einzubinden, stellen wir QuTE [Ho et al., 2021a, Ho et al., 2021b] vor – ein System zum Extrahieren von Quantitätsinformationen aus Webquellen, insbesondere Ad-hoc Webtabellen in HTML-Seiten. Der Beitrag von QuTE umfasst eine Methode zur Verknüpfung von Quantitäts- und Entitätsspalten, für die externe Textquellen genutzt werden. Zur Beantwortung von Fragen kontextualisieren wir die extrahierten Entitäts-Quantitäts-Paare mit informativen Hinweisen aus der Tabelle und stellen eine neue Methode zur Konsolidierung und verbesserteer Reihung von Antwortkandidaten durch Inter-Fakten-Konsistenz vor. • Drittens stellen wir QL [Ho et al., 2022] vor – eine Recall-orientierte Methode zur Anreicherung von Knowledge Bases (KBs) mit quantitativen Fakten. Moderne KBs wie Wikidata oder YAGO decken viele Entitäten und ihre relevanten Informationen ab, übersehen aber oft wichtige quantitative Eigenschaften. QL ist frage-gesteuert und basiert auf iterativem Lernen mit zwei Hauptbeiträgen, um die KB-Abdeckung zu verbessern. Der erste Beitrag ist eine Methode zur Expansion von Fragen, um einen größeren Pool an Faktenkandidaten zu erfassen. Der zweite Beitrag ist eine Technik zur Selbstkonsistenz durch Berücksichtigung der Werteverteilungen von Quantitäten

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollständig und enthalten auch ungültige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die Erklärbarkeit und Verständlichkeit von Wissensgraphinhalten für Nutzer. In Anwendungen ist darüber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen Entitäten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch für tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz über dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit Erklärungen für Nutzer. Die Dissertation umfasst folgende Beiträge: Insbesondere leistet die Dissertation folgende Beiträge: • Zur Wissensgraph-Erweiterung präsentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch Hinzufügen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit Lücken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche Erklärungen liefert. • Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen Repräsentationen für fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken für die Regelqualität verwendet. Experimente zeigen, dass RuLES die Qualität der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. • Zur Unterstützung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von Erklärungen für Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen für Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und Qualität der entdeckten Erklärungen deutlich verbessert. Die generierten unterstützen Erklärungen unterstütze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. • Zur Unterstützung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen Entitäts-Clustern mit Erklärungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-Erklärung besteht aus einer Kombination von Relationen zwischen den Entitäten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- Qualität und die Cluster-Erklärbarkeit durch iteratives Verschränken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher Qualität berechnet und dass die Cluster-Erklärungen für Nutzer informativ sind

    Mind the Labels: Describing Relations in Knowledge Graphs With Pretrained Models

    Full text link
    Pretrained language models (PLMs) for data-to-text (D2T) generation can use human-readable data labels such as column headings, keys, or relation names to generalize to out-of-domain examples. However, the models are well-known in producing semantically inaccurate outputs if these labels are ambiguous or incomplete, which is often the case in D2T datasets. In this paper, we expose this issue on the task of descibing a relation between two entities. For our experiments, we collect a novel dataset for verbalizing a diverse set of 1,522 unique relations from three large-scale knowledge graphs (Wikidata, DBPedia, YAGO). We find that although PLMs for D2T generation expectedly fail on unclear cases, models trained with a large variety of relation labels are surprisingly robust in verbalizing novel, unseen relations. We argue that using data with a diverse set of clear and meaningful labels is key to training D2T generation systems capable of generalizing to novel domains.Comment: Long paper at EACL '23. Code and data: https://github.com/kasnerz/rel2tex
    • …
    corecore