3 research outputs found

    Υ\Upsilon-Net: A Spatiospectral Network for Retinal OCT Segmentation

    Full text link
    Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral-domain features and combining them with spatial domain features. In this work, we present Υ\Upsilon-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings a very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance

    Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation

    Get PDF
    Optical coherence tomography (OCT) images of the retina provide a structural representation and give an insight into the pathological changes present in age-related macular degeneration (AMD). Due to the three-dimensionality and complexity of the images, manual analysis of pathological features is difficult, time-consuming, and prone to subjectivity. Computer analysis of 3D OCT images is necessary to enable automated quantitative measuring of the features, objectively and repeatedly. As supervised and semi-supervised learning-based automatic segmentation depends on the training data and quality of annotations, we have created a new database of annotated retinal OCT images – the AROI database. It consists of 1136 images with annotations for pathological changes (fluid accumulation and related findings) and basic structures (layers) in patients with AMD. Inter- and intra-observer errors have been calculated in order to enable the validation of developed algorithms in relation to human variability. Also, we have performed the automatic segmentation with standard U-net architecture and two state-of-the-art architectures for medical image segmentation to set a baseline for further algorithm development and to get insight into challenges for automatic segmentation. To facilitate and encourage further research in the field, we have made the AROI database openly available
    corecore