1,168 research outputs found

    Efficient encryption on limited devices

    Get PDF
    Encryption algorithms have been used since the dawn of time to ensure secure communication over insecure communication channels. Once a secret encryption key is established and as long as the key remains secret, two parties can communicate freely over open channels. The question of how to obtain such a secret key is a large dilemma. Many methods of obtaining such keys have been tried from the most basic form of a one-on-one encounter to more advanced techniques like Diffie-Hellman. This paper compares three versions of the Diffie-Hellman key exchange protocol -- using arithmetic in the field of integers modulo a prime, arithmetic in an Elliptic Curve field (ECC), and arithmetic in the Extended Compact Subgroup Trace Representation (XTR), respectively -- to determine which would be the most appropriate, in terms of computational efficiency, for a small personal computing device

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    EWOk: towards efficient multidimensional compression of indoor positioning datasets

    Get PDF
    Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt) and Academy of Finland (grants #319994, #323244)

    Performance evaluation of digital pulse position modulation for wavelength division multiplexing FSO systems impaired by interchannel crosstalk

    Get PDF
    Wavelength division multiplexing (WDM) has been proposed for fibre, intersatellite, free space and indoor optical communication systems. Digital pulse position modulation (DPPM) is a more power efficient modulation format than on-off keying (OOK) and a strong contender for the modulation of free-space systems. Although DPPM obtains this advantage in exchange for a bandwidth expansion, WDM systems using it are still potentially attractive, particularly for moderate coding levels. However, WDM systems are susceptible to interchannel crosstalk and modelling this in a WDM DPPM system is necessary. Models of varying complexity, based on simplifying assumptions, are presented and evaluated for the case of a single crosstalk wavelength. For a single crosstalk, results can be straightforwardly obtained by artificially imposing the computationally convenient constraint that frames (and thus slots also) align. Multiple crosstalk effects are additionally investigated, for the most practically relevant cases of modest coding level, and using both simulation and analytical methods. In general, DPPM maintains its sensitivity advantage over OOK even in the presence of crosstalk while predicting lower power penalty at low coding level in WDM systems

    Novel architectures and strategies for security offloading

    Get PDF
    Internet has become an indispensable and powerful tool in our modern society. Its ubiquitousness, pervasiveness and applicability have fostered paradigm changes around many aspects of our lives. This phenomena has positioned the network and its services as fundamental assets over which we rely and trust. However, Internet is far from being perfect. It has considerable security issues and vulnerabilities that jeopardize its main core functionalities with negative impact over its players. Furthermore, these vulnerabilities¿ complexities have been amplified along with the evolution of Internet user mobility. In general, Internet security includes both security for the correct network operation and security for the network users and endpoint devices. The former involves the challenges around the Internet core control and management vulnerabilities, while the latter encompasses security vulnerabilities over end users and endpoint devices. Similarly, Internet mobility poses major security challenges ranging from routing complications, connectivity disruptions and lack of global authentication and authorization. The purpose of this thesis is to present the design of novel architectures and strategies for improving Internet security in a non-disruptive manner. Our novel security proposals follow a protection offloading approach. The motives behind this paradigm target the further enhancement of the security protection while minimizing the intrusiveness and disturbance over the Internet routing protocols, its players and users. To accomplish such level of transparency, the envisioned solutions leverage on well-known technologies, namely, Software Defined Networks, Network Function Virtualization and Fog Computing. From the Internet core building blocks, we focus on the vulnerabilities of two key routing protocols that play a fundamental role in the present and the future of the Internet, i.e., the Border Gateway Protocol (BGP) and the Locator-Identifier Split Protocol (LISP). To this purpose, we first investigate current BGP vulnerabilities and countermeasures with emphasis in an unresolved security issue defined as Route Leaks. Therein, we discuss the reasons why different BGP security proposals have failed to be adopted, and the necessity to propose innovative solutions that minimize the impact over the already deployed routing solution. To this end, we propose pragmatic security methodologies to offload the protection with the following advantages: no changes to the BGP protocol, neither dependency on third party information nor on third party security infrastructure, and self-beneficial. Similarly, we research the current LISP vulnerabilities with emphasis on its control plane and mobility support. We leverage its by-design separation of control and data planes to propose an enhanced location-identifier registration process of end point identifiers. This proposal improves the mobility of end users with regards on securing a dynamic traffic steering over the Internet. On the other hand, from the end user and devices perspective we research new paradigms and architectures with the aim of enhancing their protection in a more controllable and consolidated manner. To this end, we propose a new paradigm which shifts the device-centric protection paradigm toward a user-centric protection. Our proposal focus on the decoupling or extending of the security protection from the end devices toward the network edge. It seeks the homogenization of the enforced protection per user independently of the device utilized. We further investigate this paradigm in a mobility user scenario. Similarly, we extend this proposed paradigm to the IoT realm and its intrinsic security challenges. Therein, we propose an alternative to protect both the things, and the services that leverage from them by consolidating the security at the network edge. We validate our proposal by providing experimental results from prof-of-concepts implementations.Internet se ha convertido en una poderosa e indispensable herramienta para nuestra sociedad moderna. Su omnipresencia y aplicabilidad han promovido grandes cambios en diferentes aspectos de nuestras vidas. Este fenómeno ha posicionado a la red y sus servicios como activos fundamentales sobre los que contamos y confiamos. Sin embargo, Internet está lejos de ser perfecto. Tiene considerables problemas de seguridad y vulnerabilidades que ponen en peligro sus principales funcionalidades. Además, las complejidades de estas vulnerabilidades se han ampliado junto con la evolución de la movilidad de usuarios de Internet y su limitado soporte. La seguridad de Internet incluye tanto la seguridad para el correcto funcionamiento de la red como la seguridad para los usuarios y sus dispositivos. El primero implica los desafíos relacionados con las vulnerabilidades de control y gestión de la infraestructura central de Internet, mientras que el segundo abarca las vulnerabilidades de seguridad sobre los usuarios finales y sus dispositivos. Del mismo modo, la movilidad en Internet plantea importantes desafíos de seguridad que van desde las complicaciones de enrutamiento, interrupciones de la conectividad y falta de autenticación y autorización globales. El propósito de esta tesis es presentar el diseño de nuevas arquitecturas y estrategias para mejorar la seguridad de Internet de una manera no perturbadora. Nuestras propuestas de seguridad siguen un enfoque de desacople de la protección. Los motivos detrás de este paradigma apuntan a la mejora adicional de la seguridad mientras que minimizan la intrusividad y la perturbación sobre los protocolos de enrutamiento de Internet, sus actores y usuarios. Para lograr este nivel de transparencia, las soluciones previstas aprovechan nuevas tecnologías, como redes definidas por software (SDN), virtualización de funciones de red (VNF) y computación en niebla. Desde la perspectiva central de Internet, nos centramos en las vulnerabilidades de dos protocolos de enrutamiento clave que desempeñan un papel fundamental en el presente y el futuro de Internet, el Protocolo de Puerta de Enlace Fronterizo (BGP) y el Protocolo de Separación Identificador/Localizador (LISP ). Para ello, primero investigamos las vulnerabilidades y medidas para contrarrestar un problema no resuelto en BGP definido como Route Leaks. Proponemos metodologías pragmáticas de seguridad para desacoplar la protección con las siguientes ventajas: no cambios en el protocolo BGP, cero dependencia en la información de terceros, ni de infraestructura de seguridad de terceros, y de beneficio propio. Del mismo modo, investigamos las vulnerabilidades actuales sobre LISP con énfasis en su plano de control y soporte de movilidad. Aprovechamos la separacçón de sus planos de control y de datos para proponer un proceso mejorado de registro de identificadores de ubicación y punto final, validando de forma segura sus respectivas autorizaciones. Esta propuesta mejora la movilidad de los usuarios finales con respecto a segurar un enrutamiento dinámico del tráfico a través de Internet. En paralelo, desde el punto de vista de usuarios finales y dispositivos investigamos nuevos paradigmas y arquitecturas con el objetivo de mejorar su protección de forma controlable y consolidada. Con este fin, proponemos un nuevo paradigma hacia una protección centrada en el usuario. Nuestra propuesta se centra en el desacoplamiento o ampliación de la protección de seguridad de los dispositivos finales hacia el borde de la red. La misma busca la homogeneización de la protección del usuario independientemente del dispositivo utilizado. Además, investigamos este paradigma en un escenario con movilidad. Validamos nuestra propuesta proporcionando resultados experimentales obtenidos de diferentes experimentos y pruebas de concepto implementados.Postprint (published version

    Novel architectures and strategies for security offloading

    Get PDF
    Internet has become an indispensable and powerful tool in our modern society. Its ubiquitousness, pervasiveness and applicability have fostered paradigm changes around many aspects of our lives. This phenomena has positioned the network and its services as fundamental assets over which we rely and trust. However, Internet is far from being perfect. It has considerable security issues and vulnerabilities that jeopardize its main core functionalities with negative impact over its players. Furthermore, these vulnerabilities¿ complexities have been amplified along with the evolution of Internet user mobility. In general, Internet security includes both security for the correct network operation and security for the network users and endpoint devices. The former involves the challenges around the Internet core control and management vulnerabilities, while the latter encompasses security vulnerabilities over end users and endpoint devices. Similarly, Internet mobility poses major security challenges ranging from routing complications, connectivity disruptions and lack of global authentication and authorization. The purpose of this thesis is to present the design of novel architectures and strategies for improving Internet security in a non-disruptive manner. Our novel security proposals follow a protection offloading approach. The motives behind this paradigm target the further enhancement of the security protection while minimizing the intrusiveness and disturbance over the Internet routing protocols, its players and users. To accomplish such level of transparency, the envisioned solutions leverage on well-known technologies, namely, Software Defined Networks, Network Function Virtualization and Fog Computing. From the Internet core building blocks, we focus on the vulnerabilities of two key routing protocols that play a fundamental role in the present and the future of the Internet, i.e., the Border Gateway Protocol (BGP) and the Locator-Identifier Split Protocol (LISP). To this purpose, we first investigate current BGP vulnerabilities and countermeasures with emphasis in an unresolved security issue defined as Route Leaks. Therein, we discuss the reasons why different BGP security proposals have failed to be adopted, and the necessity to propose innovative solutions that minimize the impact over the already deployed routing solution. To this end, we propose pragmatic security methodologies to offload the protection with the following advantages: no changes to the BGP protocol, neither dependency on third party information nor on third party security infrastructure, and self-beneficial. Similarly, we research the current LISP vulnerabilities with emphasis on its control plane and mobility support. We leverage its by-design separation of control and data planes to propose an enhanced location-identifier registration process of end point identifiers. This proposal improves the mobility of end users with regards on securing a dynamic traffic steering over the Internet. On the other hand, from the end user and devices perspective we research new paradigms and architectures with the aim of enhancing their protection in a more controllable and consolidated manner. To this end, we propose a new paradigm which shifts the device-centric protection paradigm toward a user-centric protection. Our proposal focus on the decoupling or extending of the security protection from the end devices toward the network edge. It seeks the homogenization of the enforced protection per user independently of the device utilized. We further investigate this paradigm in a mobility user scenario. Similarly, we extend this proposed paradigm to the IoT realm and its intrinsic security challenges. Therein, we propose an alternative to protect both the things, and the services that leverage from them by consolidating the security at the network edge. We validate our proposal by providing experimental results from prof-of-concepts implementations.Internet se ha convertido en una poderosa e indispensable herramienta para nuestra sociedad moderna. Su omnipresencia y aplicabilidad han promovido grandes cambios en diferentes aspectos de nuestras vidas. Este fenómeno ha posicionado a la red y sus servicios como activos fundamentales sobre los que contamos y confiamos. Sin embargo, Internet está lejos de ser perfecto. Tiene considerables problemas de seguridad y vulnerabilidades que ponen en peligro sus principales funcionalidades. Además, las complejidades de estas vulnerabilidades se han ampliado junto con la evolución de la movilidad de usuarios de Internet y su limitado soporte. La seguridad de Internet incluye tanto la seguridad para el correcto funcionamiento de la red como la seguridad para los usuarios y sus dispositivos. El primero implica los desafíos relacionados con las vulnerabilidades de control y gestión de la infraestructura central de Internet, mientras que el segundo abarca las vulnerabilidades de seguridad sobre los usuarios finales y sus dispositivos. Del mismo modo, la movilidad en Internet plantea importantes desafíos de seguridad que van desde las complicaciones de enrutamiento, interrupciones de la conectividad y falta de autenticación y autorización globales. El propósito de esta tesis es presentar el diseño de nuevas arquitecturas y estrategias para mejorar la seguridad de Internet de una manera no perturbadora. Nuestras propuestas de seguridad siguen un enfoque de desacople de la protección. Los motivos detrás de este paradigma apuntan a la mejora adicional de la seguridad mientras que minimizan la intrusividad y la perturbación sobre los protocolos de enrutamiento de Internet, sus actores y usuarios. Para lograr este nivel de transparencia, las soluciones previstas aprovechan nuevas tecnologías, como redes definidas por software (SDN), virtualización de funciones de red (VNF) y computación en niebla. Desde la perspectiva central de Internet, nos centramos en las vulnerabilidades de dos protocolos de enrutamiento clave que desempeñan un papel fundamental en el presente y el futuro de Internet, el Protocolo de Puerta de Enlace Fronterizo (BGP) y el Protocolo de Separación Identificador/Localizador (LISP ). Para ello, primero investigamos las vulnerabilidades y medidas para contrarrestar un problema no resuelto en BGP definido como Route Leaks. Proponemos metodologías pragmáticas de seguridad para desacoplar la protección con las siguientes ventajas: no cambios en el protocolo BGP, cero dependencia en la información de terceros, ni de infraestructura de seguridad de terceros, y de beneficio propio. Del mismo modo, investigamos las vulnerabilidades actuales sobre LISP con énfasis en su plano de control y soporte de movilidad. Aprovechamos la separacçón de sus planos de control y de datos para proponer un proceso mejorado de registro de identificadores de ubicación y punto final, validando de forma segura sus respectivas autorizaciones. Esta propuesta mejora la movilidad de los usuarios finales con respecto a segurar un enrutamiento dinámico del tráfico a través de Internet. En paralelo, desde el punto de vista de usuarios finales y dispositivos investigamos nuevos paradigmas y arquitecturas con el objetivo de mejorar su protección de forma controlable y consolidada. Con este fin, proponemos un nuevo paradigma hacia una protección centrada en el usuario. Nuestra propuesta se centra en el desacoplamiento o ampliación de la protección de seguridad de los dispositivos finales hacia el borde de la red. La misma busca la homogeneización de la protección del usuario independientemente del dispositivo utilizado. Además, investigamos este paradigma en un escenario con movilidad. Validamos nuestra propuesta proporcionando resultados experimentales obtenidos de diferentes experimentos y pruebas de concepto implementados

    Entropy accumulation

    Full text link
    We ask the question whether entropy accumulates, in the sense that the operationally relevant total uncertainty about an nn-partite system A=(A1,An)A = (A_1, \ldots A_n) corresponds to the sum of the entropies of its parts AiA_i. The Asymptotic Equipartition Property implies that this is indeed the case to first order in nn, under the assumption that the parts AiA_i are identical and independent of each other. Here we show that entropy accumulation occurs more generally, i.e., without an independence assumption, provided one quantifies the uncertainty about the individual systems AiA_i by the von Neumann entropy of suitably chosen conditional states. The analysis of a large system can hence be reduced to the study of its parts. This is relevant for applications. In device-independent cryptography, for instance, the approach yields essentially optimal security bounds valid for general attacks, as shown by Arnon-Friedman et al.Comment: 44 pages; expandable to 48 page
    corecore