38 research outputs found

    The Scope of the IBGP Routing Anomaly Problem

    Get PDF
    Correctness problems in the iBGP routing, the de-facto standard to spread global routing information in Autonomous Systems, are a well-known issue. Configurations may route cost-suboptimal, inconsistent, or even behave non-convergent and -deterministic. However, even if a lot of studies have shown many exemplary problematic configurations, the exact scope of the problem is largely unknown: Up to now, it is not clear which problems may appear under which iBGP architectures. The exact scope of the iBGP correctness problem is of high theoretical and practical interest. Knowledge on the resistance of specific architecture schemes against certain anomaly classes and the reasons may help to improve other iBGP schemes. Knowledge on the specific problems of the different schemes helps to identify the right scheme for an AS and develop workarounds

    Analysis of Effects of BGP Black Hole Routing on a Network like the NIPRNET

    Get PDF
    The Department of Defense (DoD) relies heavily on the Non-secure Internet Protocol Router Network (NIPRNET) to exchange information freely between departments, services, bases, posts, and ships. The NIPRNET is vulnerable to various attacks, to include physical and cyber attacks. One of the most frequently used cyber attacks by criminally motivated hackers is a Distributed Denial of Service (DDoS) attack. DDoS attacks can be used to exhaust network bandwidth and router processing capabilities, and as a leveraging tool for extortion. Border Gateway Protocol (BGP) black hole routing is a responsive defensive network technique for mitigating DDoS attacks. BGP black hole routing directs traffic destined to an Internet address under attack to a null address, essentially stopping the DDoS attack by dropping all traffic to the targeted system. This research examines the ability of BGP black hole routing to effectively defend a network like the NIPRNET from a DDoS attack, as well as examining two different techniques for triggering BGP black hole routing during a DDoS attack. This thesis presents experiments with three different DDoS attack scenarios to determine the effectiveness of BGP black hole routing. Remote-triggered black hole routing is then compared against customer-triggered black hole routing to examine how well each technique reacts under a DDoS attack. The results from this study show BGP black hole routing to be highly successful. It also shows that remote-triggered black hole routing is much more effective than customer-triggered

    Scalability of iBGP Path Diversity Concepts

    Get PDF
    Abstract. Improving the path diversity seems to be the next fundamental step in the iBGP evolution. Focusing the advantages an improvement of the path diversity implies, network protocol designers have disregarded the most critical drawback so far: The effect on the scalability of the iBGP routing, a fundamental requirement for production usage. This aspect is examined by the analyses discussed in our paper. In this paper, we provide the theoretical groundwork for scalability analyses of four highly relevant path diversity schemes. Based on this groundwork, we exemplarily predict the information load the schemes induce in a system of a large ISP. Generalizing the system-specific results, we give an outlook on the load that can be expected in comparable ASs. We found that for two schemes currently in the standardization process, scalability problems in large ASs as they are operated by ISPs seem likely

    A Neural Network Approach to Border Gateway Protocol Peer Failure Detection and Prediction

    Get PDF
    The size and speed of computer networks continue to expand at a rapid pace, as do the corresponding errors, failures, and faults inherent within such extensive networks. This thesis introduces a novel approach to interface Border Gateway Protocol (BGP) computer networks with neural networks to learn the precursor connectivity patterns that emerge prior to a node failure. Details of the design and construction of a framework that utilizes neural networks to learn and monitor BGP connection states as a means of detecting and predicting BGP peer node failure are presented. Moreover, this framework is used to monitor a BGP network and a suite of tests are conducted to establish that this neural network approach as a viable strategy for predicting BGP peer node failure. For all performed experiments both of the proposed neural network architectures succeed in memorizing and utilizing the network connectivity patterns. Lastly, a discussion of this framework\u27s generic design is presented to acknowledge how other types of networks and alternate machine learning techniques can be accommodated with relative ease

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    BGP-Multipath Routing in the Internet

    Get PDF
    BGP-Multipath, or BGP-M, is a routing technique for balancing traffic load in the Internet. It enables a Border Gateway Protocol (BGP) border router to install multiple ‘equally-good’ paths to a destination prefix. While other multipath routing techniques are deployed at internal routers, BGP-M is deployed at border routers where traffic is shared on multiple border links between Autonomous Systems (ASes). Although there are a considerable number of research efforts on multipath routing, there is so far no dedicated measurement or study on BGP-M in the literature. This thesis presents the first systematic study on BGP-M. I proposed a novel approach to inferring the deployment of BGP-M by querying Looking Glass (LG) servers. I conducted a detailed investigation on the deployment of BGP-M in the Internet. I also analysed BGP-M’s routing properties based on traceroute measurements using RIPE Atlas probes. My research has revealed that BGP-M has already been used in the Internet. In particular, Hurricane Electric (AS6939), a Tier-1 network operator, has deployed BGP-M at border routers across its global network to hundreds of its neighbour ASes on both IPv4 and IPv6 Internet. My research has provided the state-of-the-art knowledge and insights in the deployment, configuration and operation of BGP-M. The data, methods and analysis introduced in this thesis can be immensely valuable to researchers, network operators and regulators who are interested in improving the performance and security of Internet routing. This work has raised awareness of BGP-M and may promote more deployment of BGP-M in future because BGP-M not only provides all benefits of multipath routing but also has distinct advantages in terms of flexibility, compatibility and transparency

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Virtualization and Distribution of the BGP Control Plane

    Get PDF
    L'Internet est organisé sous la forme d'une multitude de réseaux appelés Systèmes Autonomes (AS). Le Border Gateway Protocol (BGP) est le langage commun qui permet à ces domaines administratifs de s'interconnecter. Grâce à BGP, deux utilisateurs situés n'importe où dans le monde peuvent communiquer, car ce protocole est responsable de la propagation des messages de routage entre tous les réseaux voisins. Afin de répondre aux nouvelles exigences, BGP a dû s'améliorer et évoluer à travers des extensions fréquentes et de nouvelles architectures. Dans la version d'origine, il était indispensable que chaque routeur maintienne une session avec tous les autres routeurs du réseau. Cette contrainte a soulevé des problèmes de scalabilité, puisque le maillage complet des sessions BGP internes (iBGP) était devenu difficile à réaliser dans les grands réseaux. Pour couvrir ce besoin de connectivité, les opérateurs de réseaux font appel à la réflection de routes (RR) et aux confédérations. Mais si elles résolvent un problème de scalabilité, ces deux solutions ont soulevé des nouveaux défis car elles sont accompagnées de multiples défauts; la perte de diversité des routes candidates au processus de sélection BGP ou des anomalies comme par exemple des oscillations de routage, des déflections et des boucles en font partie. Les travaux menés dans cette thèse se concentrent sur oBGP, une nouvelle architecture pour redistribuer les routes externes à l'intérieur d'un AS. `A la place des classiques sessions iBGP, un réseau de type overlay est responsable (I) de l'´echange d'informations de routage avec les autres AS, (II) du stockage distribué des routes internes et externes, (III) de l'application de la politique de routage au niveau de l'AS et (IV) du calcul et de la redistribution des meilleures routes vers les destinations de l'Internet pour tous les routeurs clients présents dans l'AS. ABSTRACT : The Internet is organized as a collection of networks called Autonomous Systems (ASes). The Border Gateway Protocol (BGP) is the glue that connects these administrative domains. Communication is thus possible between users worldwide and each network is responsible of sharing reachability information to peers through BGP. Protocol extensions are periodically added because the intended use and design of BGP no longer fit the current demands. Scalability concerns make the required internal BGP (iBGP) full mesh difficult to achieve in today's large networks and therefore network operators resort to confederations or Route Reflectors (RRs) to achieve full connectivity. These two options come with a set of flaws of their own such as route diversity loss, persistent routing oscillations, deflections, forwarding loops etc. In this dissertation we present oBGP, a new architecture for the redistribution of external routes inside an AS. Instead of relying on the usual statically configured set of iBGP sessions, we propose to use an overlay of routing instances that are collectively responsible for (I) the exchange of routes with other ASes, (II) the storage of internal and external routes, (III) the storage of the entire routing policy configuration of the AS and (IV) the computation and redistribution of the best routes towards Internet destinations to each client router in the AS

    Virtualization and Distribution of the BGP Control Plane

    Get PDF
    The Internet is organized as a collection of networks called Autonomous Systems (ASes). The Border Gateway Protocol (BGP) is the glue that connects these administrative domains. Communication is thus possible between users worldwide and each network is responsible of sharing reachability information to peers through BGP. Protocol extensions are periodically added because the intended use and design of BGP no longer fit the current demands. Scalability concerns make the required internal BGP (iBGP) full mesh difficult to achieve in today's large networks and therefore network operators resort to confederations or Route Reflectors (RRs) to achieve full connectivity. These two options come with a set of flaws of their own such as route diversity loss, persistent routing oscillations, deflections, forwarding loops etc. In this dissertation we present oBGP, a new architecture for the redistribution of external routes inside an AS. Instead of relying on the usual statically configured set of iBGP sessions, we propose to use an overlay of routing instances that are collectively responsible for (I) the exchange of routes with other ASes, (II) the storage of internal and external routes, (III) the storage of the entire routing policy configuration of the AS and (IV) the computation and redistribution of the best routes towards Internet destinations to each client router in the AS
    corecore