196 research outputs found

    Neutrosophic Examples in Physics

    Get PDF

    Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?

    Full text link
    Classical interpretations of Goedel's formal reasoning imply that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is essentially unverifiable. However, a language of general, scientific, discourse cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic is verifiably complete. We show how some paradoxical concepts of Quantum mechanics can be expressed, and interpreted, naturally under a constructive definition of mathematical truth.Comment: 73 pages; this is an updated version of the NQ essay; an HTML version is available at http://alixcomsi.com/Do_Goedel_incompleteness_theorems.ht

    Remarks on the Gödelian Anti-Mechanist Arguments

    Get PDF
    Certain selected issues around the Gödelian anti-mechanist arguments which have received less attention are discussed

    The formal failure and social success of logic

    Get PDF
    Is formal logic a failure? It may be, if we accept the context-independent limits imposed by Russell, Frege, and others. In response to difficulties arising from such limitations I present a Toulmin-esque social recontextualization of formal logic. The results of my project provide a positive view of formal logic as a success while simultaneously reaffirming the social and contextual concerns of argumentation theorists, critical thinking scholars, and rhetoricians

    Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?

    Get PDF
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering “theorem”, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for “Hilbert mathematics” accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel’s papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part

    Willard Van Orman Quine's Philosophical Development in the 1930s and 1940s

    Get PDF
    As analytic philosophy is becoming increasingly aware of and interested in its own history, the study of that field is broadening to include, not just its earliest beginnings, but also the mid-twentieth century. One of the towering figures of this epoch is W.V. Quine (1908-2000), champion of naturalism in philosophy of science, pioneer of mathematical logic, trying to unite an austerely physicalist theory of the world with the truths of mathematics, psychology, and linguistics. Quine's posthumous papers, notes, and drafts revealing the development of his views in the forties have recently begun to be published, as well as careful philosophical studies of, for instance, the evolution of his key doctrine that mathematical and logical truth are continuous with, not divorced from, the truths of natural science. But one central text has remained unexplored: Quine's Portuguese-language book on logic, his 'farewell for now' to the discipline as he embarked on an assignment in the Navy in WWII. Anglophone philosophers have neglected this book because they could not read it. Jointly with colleagues, I have completed the first full English translation of this book. In this accompanying paper I draw out the main philosophical contributions Quine made in the book, placing them in their historical context and relating them to Quine's overall philosophical development during the period. Besides significant developments in the evolution of Quine's views on meaning and analyticity, I argue, this book is also driven by Quine's indebtedness to Russell and Whitehead, Tarski, and Frege, and contains crucial developments in his thinking on philosophy of logic and ontology. This includes early versions of some arguments from 'On What There Is', four-dimensionalism, and virtual set theory

    Full Issue

    Get PDF
    • 

    corecore