51,388 research outputs found

    Toward a general purpose software environment for timeline-based planning

    Get PDF
    Timeline-based Planning and Scheduling applications have been successfully deployed in various contexts. Often such applications use specific solving algorithms and cannot be easily applied for solving different kind of problems. Then, an open research issue for such planning modeling is the one of creating a software infrastructure with a controllable search engine. In this regard, this paper presents an attempt to synthesize such a software environment. The Extensible Planning and Scheduling Library (EPSL) evolves from the Timeline Representation Framework (APSI-TRF), a software environment supported by the European Space Agency. Goal of EPSL is to obtain a software architecture having the flexibility to focus on specific problem solving aspects. The paper is an initial report on this effort: it introduces the whole idea, then focuses on the definition of suitable heuristic functions, and presents experiments related to two domains generated by current applications

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements ¿ the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization
    • …
    corecore