117 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Efficient high-resolution video compression scheme using background and foreground layers

    Get PDF
    Video coding using dynamic background frame achieves better compression compared to the traditional techniques by encoding background and foreground separately. This process reduces coding bits for the overall frame significantly; however, encoding background still requires many bits that can be compressed further for achieving better coding efficiency. The cuboid coding framework has been proven to be one of the most effective methods of image compression which exploits homogeneous pixel correlation within a frame and has better alignment with object boundary compared to traditional block-based coding. In a video sequence, the cuboid-based frame partitioning varies with the changes of the foreground. However, since the background remains static for a group of pictures, the cuboid coding exploits better spatial pixel homogeneity. In this work, the impact of cuboid coding on the background frame for high-resolution videos (Ultra-High-Definition (UHD) and 360-degree videos) is investigated using the multilayer framework of SHVC. After the cuboid partitioning, the method of coarse frame generation has been improved with a novel idea by keeping human-visual sensitive information. Unlike the traditional SHVC scheme, in the proposed method, cuboid coded background and the foreground are encoded in separate layers in an implicit manner. Simulation results show that the proposed video coding method achieves an average BD-Rate reduction of 26.69% and BD-PSNR gain of 1.51 dB against SHVC with significant encoding time reduction for both UHD and 360 videos. It also achieves an average of 13.88% BD-Rate reduction and 0.78 dB BD-PSNR gain compared to the existing relevant method proposed by X. Hoang Van. © 2013 IEEE

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices

    H2B2VS (HEVC Hybrid Broadcast Broadband Video Services) – building innovative solutions over hybrid networks

    Get PDF
    Broadcast and broadband networks continue to be separate worlds in the video consumption business. Some initiatives such as HbbTV have built a bridge between both worlds, but its application is almost limited to providing links over the broadcast channel to content providers’ applications such as Catch-up TV services. When it comes to reality, the user is using either one network or the other. H2B2VS is a Celtic-Plus project aiming at exploiting the potential of real hybrid networks by implementing efficient synchronization mechanisms and using new video coding standard such as High Efficiency Video Coding (HEVC). The goal is to develop successful hybrid network solutions that enable value added services with an optimum bandwidth usage in each network and with clear commercial applications. An example of the potential of this approach is the transmission of Ultra-HD TV by sending the main content over the broadcast channel and the required complementary information over the broadband network. This technology can also be used to improve the life of handicapped persons: Deaf people receive through the broadband network a sign language translation of a programme sent over the broadcast channel; the TV set then displays this translation in an inset window. One of the most important contributions of the project is developing and testing synchronization methods between two different networks that offer unequal qualities of service with significant differences in delay and jitter. In this paper, the main technological project contributions are described, including SHVC, the scalable extension of HEVC and a special focus on the synchronization solution adopted by MPEG and DVB. The paper also presents some of the implemented practical use cases, such as the sign language translation described above, and their performance results so as to evaluate the commercial application of this type of solution
    • 

    corecore