1,304 research outputs found

    Pulse vaccination in the periodic infection rate SIR epidemic model

    Full text link
    A pulse vaccination SIR model with periodic infection rate β(t)\beta (t) have been proposed and studied. The basic reproductive number R0R_0 is defined. The dynamical behaviors of the model are analyzed with the help of persistence, bifurcation and global stability. It has been shown that the infection-free periodic solution is globally stable provided R0<1R_0 < 1 and is unstable if R0>1R_0>1. Standard bifurcation theory have been used to show the existence of the positive periodic solution for the case of R01+R_0 \to1^+. Finally, the numerical simulations have been performed to show the uniqueness and the global stability of the positive periodic solution of the system.Comment: 17pages and 3figures, submmission to Mathematical Bioscience

    Real Options in Stochastic SIR Model (Financial Modeling and Analysis)

    Get PDF

    On the Supervision of a Saturated SIR Epidemic Model with Four Joint Control Actions for a Drastic Reduction in the Infection and the Susceptibility through Time

    Get PDF
    This paper presents and studies a new epidemic SIR (Susceptible–Infectious–Recovered) model with susceptible recruitment and eventual joint vaccination efforts for both newborn and susceptible individuals. Furthermore, saturation effects in the infection incidence terms are eventually assumed for both the infectious and the susceptible subpopulations. The vaccination action on newborn individuals is assumed to be applied to a fraction of them while that on the susceptible general population is of linear feedback type reinforced with impulsive vaccination actions (in practice, very strong and massive vaccination controls) at certain time points, based on information on the current levels of the susceptible subpopulation. Apart from the above vaccination controls, it is also assumed that the average of contagion contacts can be controlled via intervention measures, such as confinements or isolation measures, social distance rules, use of masks, mobility constraints, etc. The main objectives of the paper are the achievement of a strictly decreasing infection for all time periods and that of the susceptible individuals over the initial period if they exceed the disease-free equilibrium value. The monitoring mechanism is the combined activation of intervention measures to reduce the contagion contacts together with the impulsive vaccination to reduce susceptibility. The susceptibility and recovery levels of the disease-free equilibrium point are suitably prefixed by the design of the regular feedback vaccination on the susceptible subpopulation.The research received support from the Spanish Government and the European commission through grant RTI2016-094336-BI00 (MCIU/AEI/FEDER, UE)

    On a New Epidemic Model with Asymptomatic and Dead-Infective Subpopulations with Feedback Controls Useful for Ebola Disease

    Get PDF
    This paper studies the nonnegativity and local and global stability properties of the solutions of a newly proposed SEIADR model which incorporates asymptomatic and dead-infective subpopulations into the standard SEIR model and, in parallel, it incorporates feedback vaccination plus a constant term on the susceptible and feedback antiviral treatment controls on the symptomatic infectious subpopulation. A third control action of impulsive type (or “culling”) consists of the periodic retirement of all or a fraction of the lying corpses which can become infective in certain diseases, for instance, the Ebola infection. The three controls are allowed to be eventually time varying and contain a total of four design control gains. The local stability analysis around both the disease-free and endemic equilibrium points is performed by the investigation of the eigenvalues of the corresponding Jacobian matrices. The global stability is formally discussed by using tools of qualitative theory of differential equations by using Gauss-Stokes and Bendixson theorems so that neither Lyapunov equation candidates nor the explicit solutions are used. It is proved that stability holds as a parallel property to positivity and that disease-free and the endemic equilibrium states cannot be simultaneously either stable or unstable. The periodic limit solution trajectories and equilibrium points are analyzed in a combined fashion in the sense that the endemic periodic solutions become, in particular, equilibrium points if the control gains converge to constant values and the control gain for culling the infective corpses is asymptotically zeroed.This research is supported by the Spanish Government and the European Fund of Regional Development FEDER through Grant DPI2015-64766-R

    Global stability of disease-free equilibria in a two-group SI model with feedback control

    Get PDF
    In this letter, a two-group SI epidemic model is tackled with an eye to population mobility. Using the method of Lyapunov functions, global stability of the disease-free equilibria with respect to one group as well as both groups is investigated. We find that the disease outbreak can be effectively controlled through adjusting the feedback control variables. Examples are worked out to illustrate the theoretical results

    Stability analysis of drinking epidemic models and investigation of optimal treatment strategy

    Get PDF
    In this research we investigate a class of drinking epidemic models, namely the SPARS type models. The basic reproduction number is derived, and the system dynamical behaviours are investigated for both drinking free equilibrium and drinking persistent equilibrium. The purpose is to determine the long term optimal treatment method and the optimal short period vaccination strategy for controlling the population of the periodic drinkers and alcoholics

    Three Essays on Individuals’ Vulnerability to Security Attacks in Online Social Networks: Factors and Behaviors

    Get PDF
    With increasing reliance on the Internet, the use of online social networks (OSNs) for communication has grown rapidly. OSN platforms are used to share information and communicate with friends and family. However, these platforms can pose serious security threats to users. In spite of the extent of such security threats and resulting damages, little is known about factors associated with individuals’ vulnerability to online security attacks. We address this gap in the following three essays. Essay 1 draws on a synthesis of the epidemic theory in infectious disease epidemiology with the social capital theory to conceptualize factors that contribute to an individual’s role in security threat propagation in OSN. To test the model, we collected data and created a network of hacked individuals over three months from Twitter. The final hacked network consists of over 8000 individual users. Using this data set, we derived individual’s factors measuring threat propagation efficacy and threat vulnerability. The dependent variables were defined based on the concept of epidemic theory in disease propagation. The independent variables are measured based on the social capital theory. We use the regression method for data analysis. The results of this study uncover factors that have significant impact on threat propagation efficacy and threat vulnerability. We discuss the novel theoretical and managerial contributions of this work. Essay 2 explores the role of individuals’ interests in their threat vulnerability in OSNs. In OSNs, individuals follow social pages and post contents that can easily reveal their topics of interest. Prior studies show high exposure of individuals to topics of interest can decrease individuals’ ability to evaluate the risks associated with their interests. This gives attackers a chance to target people based on what they are interested in. However, interest-based vulnerability is not just a risk factor for individuals themselves. Research has reported that similar interests lead to friendship and individuals share similar interests with their friends. This similarity can increase trust among friends and makes individuals more vulnerable to security threat coming from their friends’ behaviors. Despite the potential importance of interest in the propagation of online security attacks online, the literature on this topic is scarce. To address this gap, we capture individuals’ interests in OSN and identify the association between individuals’ interests and their vulnerability to online security threats. The theoretical foundation of this work is a synthesis of dual-system theory and the theory of homophily. Communities of interest in OSN were detected using a known algorithm. We test our model using the data set and social network of hacked individuals from Essay 1. We used this network to collect additional data about individuals’ interests in OSN. The results determine communities of interests which were associated with individuals’ online threat vulnerability. Moreover, our findings reveal that similarities of interest among individuals and their friends play a role in individuals’ threat vulnerability in OSN. We discuss the novel theoretical and empirical contributions of this work. Essay 3 examines the role addiction to OSNs plays in individuals’ security perceptions and behaviors. Despite the prevalence of problematic use of OSNs and the possibility of addiction to these platforms, little is known about the functionalities of brain systems of users who suffer from OSN addiction and their online security perception and behaviors. In addressing these gaps, we have developed the Online addiction & security behaviors (OASB) theory by synthesizing dual-system theory and extended protection motivation theory (PMT). We collected data through an online survey. The results indicate that OSN addiction is rooted in the individual’s brain systems. For the OSN addicted, there is a strong cognitive-emotional preoccupation with using OSN. Our findings also reveal the positive and significant impact of OSN addiction on perceived susceptibility to and severity of online security threats. Moreover, our results show the negative association between OSN addiction and perceived self-efficacy. We discuss the theoretical and practical implications of this work

    On some new mathematical models for infective diseases: analysis, equilibrium, positivity and vaccination controls

    Get PDF
    196 p.Por un lado, cuando la enfermedad se desarrolla mediante la transmisión de los agentes patógenos de un individuo enfermo a otro, como puede ser el caso del SIDA, o la gripe, se le llama enfermedad infecciosa, mientras que las enfermedades no-infecciosas se desarrollan sin la intervención de estos agentes, y normalmente se asocian a predisposiciones genéticas, ambientales o modos de vida específicos. Esto no significa que estas dos categorías no puedan solaparse, por ejemplo, la cirrosis y el cáncer de hígado se asocian firmemente a contraer hepatitis (una enfermedad infecciosa), aunque contraer esta enfermedad no es necesario para que incida el cáncer o la cirrosis. En otra enfermedades, las variables derivadas del ecosistema de los agentes de infección puede aumentar la complejidad de los parámetros de los modelos hasta un nivel donde estos se vuelven inservibles. En tales casos, como en el de las enfermedades causadas por ¿macro parásitos¿ tipo pulgas, trematodos u hongos, no se tienen en cuenta a la hora de modelizar, ya que las circunstancias ambientales en las que se da la infección y el numero de agentes infecciosos tienen tanta influencia en la enfermedad que la complejidad de los modelos aumenta hasta el punto de no poder describir correctamente.Por tanto, los modelos matemáticos mas eficaces se concentran en las enfermedades infecciosas de transmisión ¿rápida¿, donde la densidad de patógenos dentro del anfitrión y su ciclo de vida no son relevantes para el modelo. Epidemias típicas estudiadas suelen ser la gripe, tos ferina, tuberculosis, malaria, dengue, sarampión, difteria, etc¿La mecánica de estas enfermedades epidémicas comparte una serie de parámetros caracterizados por la transmisión de la enfermedad de infectados a no infectados, y típicamente contiene unos periodos de tiempo en donde la enfermedad no ha presentado los síntomas (periodo de incubación) pero el paciente se ha vuelto infectivo para otros. Mas tarde, los infectados muestran síntomas externos (infecciosos) de diferentes tipos e intensidades, dependiendo del tipo de enfermedad e individuos. Al cabo de cierto tiempo, que depende de cada enfermedad, la población infectada puede volver a recobrarse, siendo esta inmune a la enfermedad o susceptible de nuevo a otras infecciones. Los modelos epidémicos se refieren a las diversas clases de subpoblaciones relativas a la enfermedad usando los siguientes acrónimos:¿ La subpoblación susceptible (¿S¿), o la porción de individuos de la población total que es susceptible a ser infectada¿ La subpoblación infectada (¿E¿) son aquellos individuos de la población que ha sido contagiada por la enfermedad pero todavía no es capaz de producir nuevas infecciones. También se les llama población expuesta.¿ La subpoblación infecciosa (¿I¿) esta compuesta de aquellos individuos infectados que son capaces de transmitir la infección a otros individuos.¿ La subpoblación ¿recobrada¿ (¿R¿) se refiere a la población no enferma que no pertenece a la población susceptible. Se entiende que es inmune tras haber pasado la enfermedad y tener defensas activas contra ella, aunque otras veces dicha inmunidad se puede adquirir mediante otros medios.Este es el caso en algunos modelos epidémicos en el que se incluye también una subpoblación extra llamada ¿vacunados¿ (¿V¿).La suma total de las subpoblaciones se denomina población total (¿N¿)De esta forma se presentan una serie de modelos típicos con diferentes niveles de complejidad ¿ Modelos SI (Susceptible/Infeccioso)¿ Modelos SIR (Susceptible/Infeccioso/Recobrado)¿ Modelos SEIR (Susceptible/Expuesto/Infeccioso/Recobrado)¿ Modelos SVEIR (Susceptible/Vacunado/Expuesto/Infeccioso/Recobrado)En estos modelos pueden aplicar una función para representar la vacunación, a la que nos referiremos como Vc. . Según sea la naturaleza específica de las enfermedad y la reacción del sistema inmunitario del huésped, algunas variantes de los modelos, como el anterior, incluyen un nuevo "S" final en su correspondiente acrónimo (cf. SEIRS), como la etapa final de la enfermedad se remonta desde recuperó para susceptible. Dependiendo de la velocidad de la del proceso y el impacto en la salud de la población enferma, las fluctuaciones en la población total se pueden tener en cuenta. Por lo tanto, la tasa de producción de los recién nacidos y las tasas de mortalidad se tienen en cuenta aunque, por simplicidad, a veces la población se supone constante y estos parámetros se omiten en las ecuaciones.A la hora de controlar estas enfermedades hay varios métodos para reducir, en términos estadísticos, la probabilidad de infección sobre la población y la propagación de la enfermedad. Muchos de ellos implican la eliminación de cierta cantidad de individuos susceptibles o infectados de la población (sacrificio), o el aislamiento de lo conocido infectados del resto de los individuos sanos (cuarentena). La medicina tiene una larga historia con esta forma de control de la enfermedad, que en nuestros modelos se convertirían en las leyes de control. Estos métodos son genéricos y pueden aplicarse cuando la información acerca de la enfermedad es mínima. Sin embargo, los recursos necesarios utilizando estos métodos no siempre son menos intrusivo y son necesarios otros métodos más asequibles. Por lo tanto, la vacunación se considera una ley de control y de tal modo hay dos estrategias principales sobre cómo aplicarlas: Vacunación constante y vacunación impulsiva, siendo estas controladas por leyes basadas en datos de las subpoblaciones, etc.Las leyes de control de la vacunación pueden incluir observadores para estimar las subpoblaciones con el fin de sintetizar los controles basados en ellos. Un dato importante a tener en cuenta en relación con la vacunación es la siguiente: los modelos epidémicos nunca son (estado) controlables bajo cualquier ley de control de la vacunación y, lo que es equivalente, los modelos epidémicos siempre muestran (estado) una incontrolabilidad, por lo que no hay una ley de control que permita llevar a todas las subpoblaciones a los valores prescritos en un tiempo finito. La razón intuitiva para esta incontrolabilidad es que los modelos epidémicos describen transiciones entre las subpoblaciones y normalmente una persona que se infecta, siempre que no muere, pasa a lo largo de todas las fases de la enfermedad a través del tiempo por lo que esto hace imposible lograr con capacidad de control de la forma habitual. Sin embargo, debe tenerse en cuenta que la propiedad de "controlabilidad de salida" es un objetivo realizable, si la salida se define con alguna combinación de subpoblación. Por ejemplo, si la salida es la suma de expuestos + infecciosos, puede fijarse como la controlabilidad de salida observada subjetivas para fijar a cero esta salida. Si se define como la suma de los susceptibles + inmunes, puede fijarse como objetivo la controlabilidad de salida para arreglar esta salida para ellos emergente totales.Esta tesis doctoral versa sobre algunas propiedades en la dinámica de las clases de varios de los modelos epidémicos SIRS, SEIRS y SVEIRS. Se le da una mayor relevancia a las propiedades de estabilidad local (alrededor de los puntos de equilibrio) y global, así como a las reglas de vacunación que se implementan con el fin de eliminar asintóticamente la enfermedad y / o para mejorar su comportamiento transitorio hacia a erradicación en la práctica.Nuestros modelos epidémicos se pueden desarrollar ya sea con poblaciones normalizadas o no normalizadas (la población total es de unidad y de las subpoblaciones son fracciones de la unidad cuya suma iguala la unidad). En el primer caso, la evolución en el tiempo de las subpoblaciones se interpreta como un porcentaje de la cantidad de individuos de cada subpoblación en cada instante de tiempo. Otras propiedades de interés en el contexto de las ecuaciones diferenciales o sistemas de tiempo continuo o de tiempo discreto son: i) Estabilidad global/local: La estabilidad global de la población es irrelevante para los modelos normalizados, ya que todas las subpoblaciones están delimitadas para todos los tiempos. En el caso de los modelos de un-normalizada, es de interés en el caso de que la población total es ilimitado.ii) ii) Estabilidad parcial global/local: Es relevante tanto para ambos modelos normalizados/no normalizados, en el sentido de que las subpoblaciones expuestas e infecciosas son candidatas a converger asintóticamente a cero. De la misma forma, la suma de todas las otras subpoblaciones converge asintóticamente al total de la población.iii) iii) La permanencia de la infección: Se relaciona con el caso cuando las subpoblaciones expuestas/infecciosas no pueden eliminarse de manera. Si el modelo es permanente para cualquier condición inicial, entonces el punto de equilibrio libre de enfermedad (es decir, la que tiene cero subpoblaciones infectadas o infecciosas) no puede ser asintóticamente estable. iv) iv) La positividad de la solución: Dada la coherencia de los modelos en relación con la naturaleza de lo descrito, los modelos epidémicos no admiten subpoblaciones negativas. os modelos se describen mediante un conjunto de parámetros, siendo algunos de ellos depende de la especie tratados y algunos de ellos de la enfermedad en particular. En general los parámetros principales son :-Las tasas de natalidad de la población, , que se relacionan con la población que por unidad de tiempo, en promedio. -Las tasa de mortalidad natural relacionada con la muerte de las personas debido a la vejez y causas no relacionada con la enfermedad-A su vez, existe una tasa de mortalidad adicional causado por la enfermedad en la subpoblación infectada. Al igual que en la tasa de mortalidad natural, es proporcional a la inversa la vida, en promedio, de un individuo afectado por la enfermedad.-Ratios de transición de subpoblación infectada a infecciosa, de infecciosa a recuperada y de recuperada a susceptible de nuevoAsimismo, dado que tratamos con enfermedades infecciosas, se tiene en cuenta una constante transmisión de la enfermedad, que se define en función del tipo de modelo utilizado.-R0: número de reproducción básica, que se define como el número promedio de casos secundarios generados a partir de un caso primario medio en una subpopblación totalmente susceptible. Este numero se deriva del resto de los parámetros y depende del tipo de modelos, y en muchos aspectos es fundamental para comprender la naturaleza de las enfermedades y su evolución a través del tiempo. El número básico de reproducción se utiliza para estudiar el impacto global que una enfermedad puede producir en una población, como R0> 1 significaría que el número de personas infectadas aumentará con respecto a la generación anterior, y R0 <1 significaría lo contrario, una disminución del número de infectados. El valor de R0 entonces se obtiene multiplicando el tiempo de infectividad medio de una persona por la tasa media de infección de un individuo en una población libre de enfermedad.Desde un punto de vista matemático, sin embargo, este individuo infectado solitario en una población libre de enfermedad se considera una perturbación del estado libre de enfermedad, uno de los muchos posibles pequeños cambios realizados en un estado de equilibrio. Entonces, dadas las ecuaciones diferenciales que regulan la dinámica de estos modelos, el efecto general de cualquier perturbación en la evolución del sistema cuando está en un estado de equilibrio se puede calcular. Dada una serie de ecuaciones de la dinámica del sistema, podemos obtener la matriz jacobiana en el punto libre de enfermedad. Entonces, la obtención de los autovalores de esta matriz nos dará las tendencias (cuando las perturbaciones realizadas son pequeñas) a aumentar o disminuir de los diversos tipos de alteraciones que se pueden hacer a este estado libre de enfermedad. Cuando los autovalores son negativos, el sistema reacciona disminuyendo las subpoblaciones que han subido conforme al autovector asignado a dicho autovalor, y aumentar las subpoblaciones que han disminuido, hasta llegar otra vez al estado libre de enfermedad. Por lo tanto, se puede decir que el estado de equilibrio es, por lo menos, localmente estable.El numero de reproducción uno manifestación de todos los valores propios de la matriz jacobiana en el equilibrio. Considere un modelo SIR como en la sección anterior con un muerto y tarifas un recién nacido ¿ y ¿ respectivamente. La matriz Jacobiana característicaEl papel del número de reproducción en el estudio de la enfermedad no sólo se limitará a hacer predicciones sobre el estado libre de la enfermedad. En condiciones R0 también puede ser un parámetro útil en el estudio de otros estados de equilibrio de las enfermedades, donde la definición inicial hecha por los epidemiólogos no se puede aplicar a las situaciones específicas
    corecore