359 research outputs found

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Achievements, open problems and challenges for search based software testing

    Get PDF
    Search Based Software Testing (SBST) formulates testing as an optimisation problem, which can be attacked using computational search techniques from the field of Search Based Software Engineering (SBSE). We present an analysis of the SBST research agenda, focusing on the open problems and challenges of testing non-functional properties, in particular a topic we call 'Search Based Energy Testing' (SBET), Multi-objective SBST and SBST for Test Strategy Identification. We conclude with a vision of FIFIVERIFY tools, which would automatically find faults, fix them and verify the fixes. We explain why we think such FIFIVERIFY tools constitute an exciting challenge for the SBSE community that already could be within its reach

    Evolutionary computing driven search based software testing and correction

    Get PDF
    For a given program, testing, locating the errors identified, and correcting those errors is a critical, yet expensive process. The field of Search Based Software Engineering (SBSE) addresses these phases by formulating them as search problems. This dissertation addresses these challenging problems through the use of two complimentary evolutionary computing based systems. The first one is the Fitness Guided Fault Localization (FGFL) system, which novelly uses a specification based fitness function to perform fault localization. The second is the Coevolutionary Automated Software Correction (CASC) system, which employs a variety of evolutionary computing techniques to perform testing, correction, and verification of software. In support of the real world application of these systems, a practitioner\u27s guide to fitness function design is provided. For the FGFL system, experimental results are presented that demonstrate the applicability of fitness guided fault localization to automate this important phase of software correction in general, and the potential of the FGFL system in particular. For the fitness function design guide, the performance of a guide generated fitness function is compared to that of an expert designed fitness function demonstrating the competitiveness of the guide generated fitness function. For the CASC system, results are presented that demonstrate the system\u27s abilities on a series of problems of both increasing size as well as number of bugs present. The system presented solutions more than 90% of the time for versions of the programs containing one or two bugs. Additionally, scalability results are presented for the CASC system that indicate that success rate linearly decreases with problem size and that the estimated convergence rate scales at worst linearly with problem size --Abstract, page ii

    How to Evaluate Solutions in Pareto-based Search-Based Software Engineering? A Critical Review and Methodological Guidance

    Full text link
    With modern requirements, there is an increasing tendency of considering multiple objectives/criteria simultaneously in many Software Engineering (SE) scenarios. Such a multi-objective optimization scenario comes with an important issue -- how to evaluate the outcome of optimization algorithms, which typically is a set of incomparable solutions (i.e., being Pareto non-dominated to each other). This issue can be challenging for the SE community, particularly for practitioners of Search-Based SE (SBSE). On one hand, multi-objective optimization could still be relatively new to SE/SBSE researchers, who may not be able to identify the right evaluation methods for their problems. On the other hand, simply following the evaluation methods for general multi-objective optimization problems may not be appropriate for specific SE problems, especially when the problem nature or decision maker's preferences are explicitly/implicitly available. This has been well echoed in the literature by various inappropriate/inadequate selection and inaccurate/misleading use of evaluation methods. In this paper, we first carry out a systematic and critical review of quality evaluation for multi-objective optimization in SBSE. We survey 717 papers published between 2009 and 2019 from 36 venues in seven repositories, and select 95 prominent studies, through which we identify five important but overlooked issues in the area. We then conduct an in-depth analysis of quality evaluation indicators/methods and general situations in SBSE, which, together with the identified issues, enables us to codify a methodological guidance for selecting and using evaluation methods in different SBSE scenarios.Comment: This paper has been accepted by IEEE Transactions on Software Engineering, available as full OA: https://ieeexplore.ieee.org/document/925218

    The Symposium on Search-Based Software Engineering: Past, Present and Future

    Get PDF
    CONTEXT: Search-Based Software Engineering (SBSE) is the research field where Software Engineering (SE) problems are modelled as search problems to be solved by search-based techniques. The Symposium on Search Based Software Engineering (SSBSE) is the premier event on SBSE, which had its 11th edition in 2019. OBJECTIVE: In order to better understand the characteristics and evolution of papers published at SSBSE, this work reports results from a mapping study targeting the proceedings of all SSBSE editions. Despite the existing mapping studies on SBSE, our contribution in this work is to provide information to researchers and practitioners willing to enter the SBSE field, being a source of information to strengthen the symposium, guide new studies, and motivate new collaboration among research groups. METHOD: A systematic mapping study was conducted with a set of four research questions, in which 134 studies published in all editions of SSBSE, dated from 2009 to 2019, were evaluated. In a fifth question, 32 papers published in the challenge track were summarised. RESULTS: Throughout the years, 290 authors from 25 countries have contributed to the main track of the symposium, with the collaboration of at least two institutions in 46.3% of the papers. SSBSE papers have got substantial external visibility, as most citations are from different venues. The SE tasks addressed by SSBSE are mostly related to software testing, software debugging, software design, and maintenance. Evolutionary algorithms are present in 75% of the papers, being the most common search technique. The evaluation of the SBSE approaches usually includes industrial systems. CONCLUSIONS: SSBSE has helped increase the popularity of SBSE in the SE research community and has played an important role on making SBSE mature. There are still problems and challenges to be addressed in the SBSE field, which can be tackled by SSBSE authors in further studies

    A mapping study of the Brazilian SBSE community

    Get PDF

    Evolutionary Search Techniques with Strong Heuristics for Multi-Objective Feature Selection in Software Product Lines

    Get PDF
    Software design is a process of trading off competing objectives. If the user objective space is rich, then we should use optimizers that can fully exploit that richness. For example, this study configures software product lines (expressed as feature models) using various search-based software engineering methods. Our main result is that as we increase the number of optimization objectives, the methods in widespread use (e.g. NSGA-II, SPEA2) perform much worse than IBEA (Indicator-Based Evolutionary Algorithm). IBEA works best since it makes most use of user preference knowledge. Hence it does better on the standard measures (hypervolume and spread) but it also generates far more products with 0 violations of domain constraints. We also present significant improvements to IBEA\u27s performance by employing three strong heuristic techniques that we call PUSH, PULL, and seeding. The PUSH technique forces the evolutionary search to respect certain rules and dependencies defined by the feature models, while the PULL technique gives higher weight to constraint satisfaction as an optimization objective and thus achieves a higher percentage of fully-compliant configurations within shorter runtimes. The seeding technique helps in guiding very large feature models to correct configurations very early in the optimization process. Our conclusion is that the methods we apply in search-based software engineering need to be carefully chosen, particularly when studying complex decision spaces with many optimization objectives. Also, we conclude that search methods must be customized to fit the problem at hand. Specifically, the evolutionary search must respect domain constraints
    corecore