35 research outputs found

    IPv6 multicast forwarding in RPL-based wireless sensor networks

    Get PDF
    In wireless sensor deployments, network layer multicast can be used to improve the bandwidth and energy efficiency for a variety of applications, such as service discovery or network management. However, despite efforts to adopt IPv6 in networks of constrained devices, multicast has been somewhat overlooked. The Multicast Forwarding Using Trickle (Trickle Multicast) internet draft is one of the most noteworthy efforts. The specification of the IPv6 routing protocol for low power and lossy networks (RPL) also attempts to address the area but leaves many questions unanswered. In this paper we highlight our concerns about both these approaches. Subsequently, we present our alternative mechanism, called stateless multicast RPL forwarding algorithm (SMRF), which addresses the aforementioned drawbacks. Having extended the TCP/IP engine of the Contiki embedded operating system to support both trickle multicast (TM) and SMRF, we present an in-depth comparison, backed by simulated evaluation as well as by experiments conducted on a multi-hop hardware testbed. Results demonstrate that SMRF achieves significant delay and energy efficiency improvements at the cost of a small increase in packet loss. The outcome of our hardware experiments show that simulation results were realistic. Lastly, we evaluate both algorithms in terms of code size and memory requirements, highlighting SMRF's low implementation complexity. Both implementations have been made available to the community for adoption

    Secure routing in IoT networks with SISLOF

    Get PDF
    In this paper, we propose a modification of the RPL routing protocol by introducing the SISLOF Objective Function ensuring that only motes that share a suitable key can join the RPL routing table. This will ensure that all IoT network motes connect in a secure method. SISLOF uses the concept of key pre-distribution proposed by Eschenauer and Gligor in the context of the Internet of Things. First, we discuss related work that provide evidence that the key pre-distribution scheme in the context of the IoT with default RPL metrics fails to achieve the full network connectivity using the same ring size, however full time connectivity can be achieved but with a great cost in term of the large rings sizes. We introduce the SISLOF Objective Function and explain the modification it does to the RPL messages (DIO and DAO). We finally show the performance of the key pre-distribution in the context of the Internet of Things when SISLOF is used as the Objective Function of the RPL routing protocol

    Entropy based routing for mobile, low power and lossy wireless sensors networks

    Full text link
    [EN] Routing protocol for low-power and lossy networks is a routing solution specifically developed for wireless sensor networks, which does not quickly rebuild topology of mobile networks. In this article, we propose a mechanism based on mobility entropy and integrate it into the corona RPL (CoRPL) mechanism, which is an extension of the IPv6 routing protocol for low-power and lossy networks (RPL). We extensively evaluated our proposal with a simulator for Internet of Things and wireless sensor networks. The mobility entropy-based mechanism, called CoRPL+E, considers the displacement of nodes as a deciding factor to define the links through which nodes communicate. Simulation results show that the proposed mechanism, when compared to CoRPL mechanism, is effective in reducing packet loss and latency in simulated mobile routing protocol for low-power and lossy networks. From the simulation results, one can see that the CoRPL+E proposal mechanism provides a packet loss reduction rate of up to 50% and delays reduction by up to 25% when compared to CoRPL mechanism.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by SIDIA Institute of Science and Technology, by Coordenacao de Aperfeicxoamento de Pessoal de Nivel Superior (CAPES), by Fundacao de Amparo a Pesquisa do Estado do Amazonas (FAPEAM)-support programs (Programa Primeiros Projetos (PPP) and Programa de Tecnologia da Informacao na Amazonia (PROTI)-Amazonia-Mobilidade), by Camara Tecnica de Reconstrucao e Recuperacao de Infraestrutura (CT-INFRA) of Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes(MCTI)/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and by Secretaria de Estado de Ciencia, Tecnologia e Inovacao Amazonas (SECTI-AM) and Government of Amazon State, Brazil.Carvalho, C.; Mota, E.; Ferraz, E.; Seixas, P.; Souza, P.; Tavares, V.; Lucena Filho, W.... (2019). Entropy based routing for mobile, low power and lossy wireless sensors networks. International Journal of Distributed Sensor Networks (Online). 15(7):1-19. https://doi.org/10.1177/1550147719866134S119157Blanco-Novoa, O., Fernández-Caramés, T., Fraga-Lamas, P., & Castedo, L. (2018). A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration. Sensors, 18(7), 2198. doi:10.3390/s18072198Ding, X., Tian, Y., & Yu, Y. (2016). A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations. IEEE Transactions on Industrial Informatics, 12(3), 1232-1242. doi:10.1109/tii.2015.2436337Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192-219. doi:10.1016/j.jnca.2015.09.008Laurindo, S., Moraes, R., Nassiffe, R., Montez, C., & Vasques, F. (2018). An Optimized Relay Selection Technique to Improve the Communication Reliability in Wireless Sensor Networks. Sensors, 18(10), 3263. doi:10.3390/s18103263Airehrour, D., Gutierrez, J., & Ray, S. K. (2016). Secure routing for internet of things: A survey. Journal of Network and Computer Applications, 66, 198-213. doi:10.1016/j.jnca.2016.03.006Mesodiakaki, A., Zola, E., Santos, R., & Kassler, A. (2018). Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links. Ad Hoc Networks, 78, 99-114. doi:10.1016/j.adhoc.2018.05.008Marszałek, Z., Woźniak, M., & Połap, D. (2018). Fully Flexible Parallel Merge Sort for Multicore Architectures. Complexity, 2018, 1-19. doi:10.1155/2018/8679579Fotouhi, H., Moreira, D., & Alves, M. (2015). mRPL: Boosting mobility in the Internet of Things. Ad Hoc Networks, 26, 17-35. doi:10.1016/j.adhoc.2014.10.009Barcelo, M., Correa, A., Vicario, J. L., Morell, A., & Vilajosana, X. (2016). Addressing Mobility in RPL With Position Assisted Metrics. IEEE Sensors Journal, 16(7), 2151-2161. doi:10.1109/jsen.2015.2500916Bouaziz, M., Rachedi, A., & Belghith, A. (2019). EKF-MRPL: Advanced mobility support routing protocol for internet of mobile things: Movement prediction approach. Future Generation Computer Systems, 93, 822-832. doi:10.1016/j.future.2017.12.015Fotouhi, H., Moreira, D., Alves, M., & Yomsi, P. M. (2017). mRPL+: A mobility management framework in RPL/6LoWPAN. Computer Communications, 104, 34-54. doi:10.1016/j.comcom.2017.01.020Iova, O., Picco, P., Istomin, T., & Kiraly, C. (2016). RPL: The Routing Standard for the Internet of Things... Or Is It? IEEE Communications Magazine, 54(12), 16-22. doi:10.1109/mcom.2016.1600397cmFotouhi, H., Alves, M., Zamalloa, M. Z., & Koubaa, A. (2014). Reliable and Fast Hand-Offs in Low-Power Wireless Networks. IEEE Transactions on Mobile Computing, 13(11), 2620-2633. doi:10.1109/tmc.2014.2307867Kamgueu, P. O., Nataf, E., & Ndie, T. D. (2018). Survey on RPL enhancements: A focus on topology, security and mobility. Computer Communications, 120, 10-21. doi:10.1016/j.comcom.2018.02.011Park, J., Kim, K.-H., & Kim, K. (2017). An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility. Sensors, 17(4), 899. doi:10.3390/s17040899Stanoev, A., Filiposka, S., In, V., & Kocarev, L. (2016). Cooperative method for wireless sensor network localization. Ad Hoc Networks, 40, 61-72. doi:10.1016/j.adhoc.2016.01.003Wallgren, L., Raza, S., & Voigt, T. (2013). Routing Attacks and Countermeasures in the RPL-Based Internet of Things. International Journal of Distributed Sensor Networks, 9(8), 794326. doi:10.1155/2013/794326Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8), 2661-2674. doi:10.1016/j.adhoc.2013.04.014Zhang, K., Liang, X., Lu, R., & Shen, X. (2014). Sybil Attacks and Their Defenses in the Internet of Things. IEEE Internet of Things Journal, 1(5), 372-383. doi:10.1109/jiot.2014.2344013Mayzaud, A., Sehgal, A., Badonnel, R., Chrisment, I., & Schönwälder, J. (2015). Mitigation of topological inconsistency attacks in RPL-based low-power lossy networks. International Journal of Network Management, 25(5), 320-339. doi:10.1002/nem.1898Navidi, W., & Camp, T. (2004). Stationary distributions for the random waypoint mobility model. IEEE Transactions on Mobile Computing, 3(1), 99-108. doi:10.1109/tmc.2004.126182

    Addressing the DAO Insider Attack in RPL’s Internet of Things Networks

    Get PDF
    In RPL routing protocol, the DAO (Destination Advertisement Object) control messages are announced by the child nodes to their parents to build downward routes. A malicious insider node can exploit this feature to send fake DAOs to its parents periodically, triggering those parents, in turn, to forward the fake messages upward to the root node. In this study, we show how this behaviour can have a detrimental side effect on the performance of the network, increasing power consumption, latency and reducing reliability. To address this problem, a new scheme is introduced to mitigate significantly the effect of the DAO attack on network performance

    Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration

    Get PDF
    International audienceThis document describes a minimal mode of operation for an IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) network. This minimal mode of operation specifies the baseline set of protocols that need to be supported and the recommended configurations and modes of operation sufficient to enable a 6TiSCH functional network. 6TiSCH provides IPv6 connectivity over a Time-Slotted Channel Hopping (TSCH) mesh composed of IEEE Std 802.15.4 TSCH links. This minimal mode uses a collection of protocols with the respective configurations, including the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) framework, enabling interoperable IPv6 connectivity over IEEE Std 802.15.4 TSCH. This minimal configuration provides the necessary bandwidth for network and security bootstrapping and defines the proper link between the IETF protocols that interface to IEEE Std 802.15.4 TSCH. This minimal mode of operation should be implemented by all 6TiSCH-compliant devices

    A Study of RPL DODAG Version Attacks

    Get PDF
    Best Paper AwardInternational audienceThe IETF designed the Routing Protocol for Low power and Lossy Networks (RPL) as a candidate for use in constrained networks. Keeping in mind the different requirements of such networks, the protocol was designed to support multiple routing topologies, called DODAGs, constructed using different objective functions, so as to optimize routing based on divergent metrics. A DODAG versioning system is incorporated into RPL in order to ensure that the topology does not become stale and that loops are not formed over time. However, an attacker can exploit this versioning system to gain an advantage in the topology and also acquire children that would be forced to route packets via this node. In this paper we present a study of possible attacks that exploit the DODAG version system. The impact on overhead, delivery ratio, end-to-end delay, rank inconsistencies and loops is studied

    Gestion de risques appliquée aux réseaux RPL

    Get PDF
    National audienceLe principe de l'Internet des Objets se traduit par le déploiement de réseaux avec pertes et à faible puissance appelés réseaux LLN a . Ces réseaux permettent à de nombreux équipements embarqués comme des sondes ou des capteurs de pouvoir communiquer entre eux. Un protocole de routage appelé RPL b a été spécialement conçu par l'IETF pour répon-dre aux contraintes spécifiques qu'impose ce type de réseaux. Néanmoins, ce protocole reste exposé à de nombreuses attaques de sécurité. Si des mécanismes de protection existent, leur mise en oeuvre est coûteuse d'où l'intérêt d'une approche dynamique comme la gestion de risques permettant d'identifier, d'évaluer et de traiter les risques. Dans ce papier, nous pro-posons une approche de gestion de risques pour les réseaux RPL afin d'améliorer leur sécurité tout en minimisant la consommation de ressources induite par les contre-mesures. Nous en effectuons une évaluation à travers deux attaques spécifiques : l'attaque d'incohérence DAG et l'attaque sur le numéro de version. a. Low power and Lossy Networks b. Routing Protocol for LL

    Mitigation of Topological Inconsistency Attacks in RPL based Low Power Lossy Networks

    Get PDF
    International audienceRPL is a routing protocol for low-power and lossy networks. A malicious node can manipulate header options used by RPL to create topological inconsistencies, thereby causing denial of service attacks, reducing channel availability, increased control message overhead, and higher energy consumption at the targeted node and its neighborhood. RPL overcomes these topological inconsistencies via a fixed threshold, upon reaching which all subsequent packets with erroneous header options are ignored. However, this threshold value is arbitrarily chosen and the performance can be improved by taking into account network characteristics. To address this we present a mitigation strategy that allows nodes to dynamically adapt against a topological inconsistency attack based on the current network conditions. Results from our experiments show that our approach outperforms the fixed threshold and mitigates these attacks without significant overhead

    A Multi-Hop 6LoWPAN Wireless Sensor Network for Waste Management Optimization

    Get PDF
    In the first part of this Thesis several Wireless Sensor Network technologies, including the ones based on the IEEE 802.15.4 Protocol Standard like ZigBee, 6LoWPAN and Ultra Wide Band, as well as other technologies based on other protocol standards like Z-Wave, Bluetooth and Dash7, are analyzed with respect to relevance and suitability with the Waste Management Outsmart European FP7 Project. A particular attention is given to the parameters which characterize a Large Scale WSN for Smart Cities, due to the amount of sensors involved and to the practical application requested by the project. Secondly, a prototype of sensor network is proposed: an Operative System named Contiki is chosen for its portability on different hardware platforms, its Open Source license, for the use of the 6LoW-PAN protocol and for the implementation of the new RPL routing protocol. The Operative System is described in detail, with a special focus on the uIPv6 TCP/IP stack and RPL implementation. With regard to this innovative routing proto col designed specifically for Low Power Lossy Networks, chapter 4 describes in detail how the network topology is organized as a Directed Acyclic Graph, what is an RPL Instance and how downward and upward routes are constructed and maintained. With the use of several AVR Atmel modules mounting the Contiki OS a real WSN is created and, with an Ultrasonic Sensor, the filling level of a waste basket prototype is periodically detected and transmitted through a multi-hop wireless network to a sink nodeope
    corecore