73 research outputs found

    Electrostatic Friction Displays to Enhance Touchscreen Experience

    Get PDF
    Touchscreens are versatile devices that can display visual content and receive touch input, but they lack the ability to provide programmable tactile feedback. This limitation has been addressed by a few approaches generally called surface haptics technology. This technology modulates the friction between a user’s fingertip and a touchscreen surface to create different tactile sensations when the finger explores the touchscreen. This functionality enables the user to see and feel digital content simultaneously, leading to improved usability and user experiences. One major approach in surface haptics relies on the electrostatic force induced between the finger and an insulating surface on the touchscreen by supplying high AC voltage. The use of AC also induces a vibrational sensation called electrovibration to the user. Electrostatic friction displays require only electrical components and provide uniform friction over the screen. This tactile feedback technology not only allows easy and lightweight integration into touchscreen devices but also provides dynamic, rich, and satisfactory user interfaces. In this chapter, we review the fundamental operation of the electrovibration technology as well as applications have been built upon

    Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

    Get PDF
    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor

    Multilayer haptic feedback for pen-based tablet interaction

    Get PDF
    We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance

    Supporting Eyes-Free Human–Computer Interaction with Vibrotactile Haptification

    Get PDF
    The sense of touch is a crucial sense when using our hands in complex tasks. Some tasks we learn to do even without sight by just using the sense of touch in our fingers and hands. Modern touchscreen devices, however, have lost some of that tactile feeling while removing physical controls from the interaction. Touch is also a sense that is underutilized in interactions with technology and could provide new ways of interaction to support users. While users are using information technology in certain situations, they cannot visually and mentally focus completely during the interaction. Humans can utilize their sense of touch more comprehensively in interactions and learn to understand tactile information while interacting with information technology. This thesis introduces a set of experiments that evaluate human capabilities to understand and notice tactile information provided by current actuator technology and further introduces a couple of examples of haptic user interfaces (HUIs) to use under eyes-free use scenarios. These experiments evaluate the benefits of such interfaces for users and concludes with some guidelines and methods for how to create this kind of user interfaces. The experiments in this thesis can be divided into three groups. In the first group, with the first two experiments, the detection of vibrotactile stimuli and interpretation of the abstract meaning of vibrotactile feedback was evaluated. Experiments in the second group evaluated how to design rhythmic vibrotactile tactons to be basic vibrotactile primitives for HUIs. The last group of two experiments evaluated how these HUIs benefit the users in the distracted and eyes-free interaction scenarios. The primary aim for this series of experiments was to evaluate if utilizing the current level of actuation technology could be used more comprehensively than in current-day solutions with simple haptic alerts and notifications. Thus, to find out if the comprehensive use of vibrotactile feedback in interactions would provide additional benefits for the users, compared to the current level of haptic interaction methods and nonhaptic interaction methods. The main finding of this research is that while using more comprehensive HUIs in eyes-free distracted-use scenarios, such as while driving a car, the user’s main task, driving, is performed better. Furthermore, users liked the comprehensively haptified user interfaces

    Interaction techniques with novel multimodal feedback for addressing gesture-sensing systems

    Get PDF
    Users need to be able to address in-air gesture systems, which means finding where to perform gestures and how to direct them towards the intended system. This is necessary for input to be sensed correctly and without unintentionally affecting other systems. This thesis investigates novel interaction techniques which allow users to address gesture systems properly, helping them find where and how to gesture. It also investigates audio, tactile and interactive light displays for multimodal gesture feedback; these can be used by gesture systems with limited output capabilities (like mobile phones and small household controls), allowing the interaction techniques to be used by a variety of device types. It investigates tactile and interactive light displays in greater detail, as these are not as well understood as audio displays. Experiments 1 and 2 explored tactile feedback for gesture systems, comparing an ultrasound haptic display to wearable tactile displays at different body locations and investigating feedback designs. These experiments found that tactile feedback improves the user experience of gesturing by reassuring users that their movements are being sensed. Experiment 3 investigated interactive light displays for gesture systems, finding this novel display type effective for giving feedback and presenting information. It also found that interactive light feedback is enhanced by audio and tactile feedback. These feedback modalities were then used alongside audio feedback in two interaction techniques for addressing gesture systems: sensor strength feedback and rhythmic gestures. Sensor strength feedback is multimodal feedback that tells users how well they can be sensed, encouraging them to find where to gesture through active exploration. Experiment 4 found that they can do this with 51mm accuracy, with combinations of audio and interactive light feedback leading to the best performance. Rhythmic gestures are continuously repeated gesture movements which can be used to direct input. Experiment 5 investigated the usability of this technique, finding that users can match rhythmic gestures well and with ease. Finally, these interaction techniques were combined, resulting in a new single interaction for addressing gesture systems. Using this interaction, users could direct their input with rhythmic gestures while using the sensor strength feedback to find a good location for addressing the system. Experiment 6 studied the effectiveness and usability of this technique, as well as the design space for combining the two types of feedback. It found that this interaction was successful, with users matching 99.9% of rhythmic gestures, with 80mm accuracy from target points. The findings show that gesture systems could successfully use this interaction technique to allow users to address them. Novel design recommendations for using rhythmic gestures and sensor strength feedback were created, informed by the experiment findings

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc
    corecore