23,009 research outputs found

    Dealing with uncertain entities in ontology alignment using rough sets

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Ontology alignment facilitates exchange of knowledge among heterogeneous data sources. Many approaches to ontology alignment use multiple similarity measures to map entities between ontologies. However, it remains a key challenge in dealing with uncertain entities for which the employed ontology alignment measures produce conflicting results on similarity of the mapped entities. This paper presents OARS, a rough-set based approach to ontology alignment which achieves a high degree of accuracy in situations where uncertainty arises because of the conflicting results generated by different similarity measures. OARS employs a combinational approach and considers both lexical and structural similarity measures. OARS is extensively evaluated with the benchmark ontologies of the ontology alignment evaluation initiative (OAEI) 2010, and performs best in the aspect of recall in comparison with a number of alignment systems while generating a comparable performance in precision

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    The Overlooked Potential of Generalized Linear Models in Astronomy - I: Binomial Regression

    Get PDF
    Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper -- the first in a series aimed at illustrating the power of these methods in astronomical applications -- we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity ≈1.3×10−4Z⹀\approx 1.3 \times 10^{-4} Z_{\bigodot}, an increase of 1.2×10−21.2 \times 10^{-2} in the gas molecular fraction, increases the probability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks.Comment: 20 pages, 10 figures, 3 tables, accepted for publication in Astronomy and Computin

    The Binary Space Partitioning-Tree Process

    Get PDF
    The Mondrian process represents an elegant and powerful approach for space partition modelling. However, as it restricts the partitions to be axis-aligned, its modelling flexibility is limited. In this work, we propose a self-consistent Binary Space Partitioning (BSP)-Tree process to generalize the Mondrian process. The BSP-Tree process is an almost surely right continuous Markov jump process that allows uniformly distributed oblique cuts in a two-dimensional convex polygon. The BSP-Tree process can also be extended using a non-uniform probability measure to generate direction differentiated cuts. The process is also self-consistent, maintaining distributional invariance under a restricted subdomain. We use Conditional-Sequential Monte Carlo for inference using the tree structure as the high-dimensional variable. The BSP-Tree process's performance on synthetic data partitioning and relational modelling demonstrates clear inferential improvements over the standard Mondrian process and other related methods
    • 

    corecore