245 research outputs found

    Optimal area triangulation

    Get PDF
    Given a set of points in the Euclidean plane, we are interested in its triangulations, i.e., the maximal sets of non-overlapping triangles with vertices in the given points whose union is the convex hull of the point set. With respect to the area of the triangles in a triangulation, several optimality criteria can be considered. We study two of them. The MaxMin area triangulation is the triangulation of the point set that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. In the case when the point set is in a convex position, we present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n2logn)O(n^2log{n}) time and O(n2)O(n^2) space. These algorithms are based on dynamic programming. They use a number of geometric properties that are established within this work, and a variety of data structures specific to the problems. Further, we study polynomial time computable approximations to the optimal area triangulations of general point sets. We present geometric properties, based on angular constraints and perfect matchings, and use them to evaluate the approximation factor and to achieve triangulations with good practical quality compared to the optimal ones. These results open new direction in the research on optimal triangulations and set the stage for further investigations on optimization of area

    An Evolutionary Algorithm for solving the Two-Dimensional Irregular Shape Packing Problem combined with the Knapsack Problem

    Get PDF
    This work presents an evolutionary algorithm to solve a joint problem of the Packing Problem and the Knapsack Problem, where the objective is to place items (with shape, value and weight) in a container (defined by its shape and capacity), maximizing the container's value, without intersections

    On realistic target coverage by autonomous drones

    Get PDF
    Low-cost mini-drones with advanced sensing and maneuverability enable a new class of intelligent sensing systems. To achieve the full potential of such drones, it is necessary to develop new enhanced formulations of both common and emerging sensing scenarios. Namely, several fundamental challenges in visual sensing are yet to be solved including (1) fitting sizable targets in camera frames; (2) positioning cameras at effective viewpoints matching target poses; and (3) accounting for occlusion by elements in the environment, including other targets. In this article, we introduce Argus, an autonomous system that utilizes drones to collect target information incrementally through a two-tier architecture. To tackle the stated challenges, Argus employs a novel geometric model that captures both target shapes and coverage constraints. Recognizing drones as the scarcest resource, Argus aims to minimize the number of drones required to cover a set of targets. We prove this problem is NP-hard, and even hard to approximate, before deriving a best-possible approximation algorithm along with a competitive sampling heuristic which runs up to 100Ă— faster according to large-scale simulations. To test Argus in action, we demonstrate and analyze its performance on a prototype implementation. Finally, we present a number of extensions to accommodate more application requirements and highlight some open problems

    Reconstructing Geometric Structures from Combinatorial and Metric Information

    Get PDF
    In this dissertation, we address three reconstruction problems. First, we address the problem of reconstructing a Delaunay triangulation from a maximal planar graph. A maximal planar graph G is Delaunay realizable if there exists a realization of G as a Delaunay triangulation on the plane. Several classes of graphs with particular graph-theoretic properties are known to be Delaunay realizable. One such class of graphs is outerplanar graph. In this dissertation, we present a new proof that an outerplanar graph is Delaunay realizable. Given a convex polyhedron P and a point s on the surface (the source), the ridge tree or cut locus is a collection of points with multiple shortest paths from s on the surface of P. If we compute the shortest paths from s to all polyhedral vertices of P and cut the surface along these paths, we obtain a planar polygon called the shortest path star (sp-star) unfolding. It is known that for any convex polyhedron and a source point, the ridge tree is contained in the sp-star unfolding polygon [8]. Given a combinatorial structure of a ridge tree, we show how to construct the ridge tree and the sp-star unfolding in which it lies. In this process, we address several problems concerning the existence of sp-star unfoldings on specified source point sets. Finally, we introduce and study a new variant of the sp-star unfolding called (geodesic) star unfolding. In this unfolding, we cut the surface of the convex polyhedron along a set of non-crossing geodesics (not-necessarily the shortest). We study its properties and address its realization problem. Finally, we consider the following problem: given a geodesic star unfolding of some convex polyhedron and a source point, how can we derive the sp-star unfolding of the same polyhedron and the source point? We introduce a new algorithmic operation and perform experiments using that operation on a large number of geodesic star unfolding polygons. Experimental data provides strong evidence that the successive applications of this operation on geodesic star unfoldings will lead us to the sp-star unfolding

    An interactive environment to investigate robot path planning in a 2D work-space

    Get PDF
    Call number: LD2668 .R4 CMSC 1989 H63Master of Scienc
    • …
    corecore