5,596 research outputs found

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    An efficient kk-means-type algorithm for clustering datasets with incomplete records

    Get PDF
    The kk-means algorithm is arguably the most popular nonparametric clustering method but cannot generally be applied to datasets with incomplete records. The usual practice then is to either impute missing values under an assumed missing-completely-at-random mechanism or to ignore the incomplete records, and apply the algorithm on the resulting dataset. We develop an efficient version of the kk-means algorithm that allows for clustering in the presence of incomplete records. Our extension is called kmk_m-means and reduces to the kk-means algorithm when all records are complete. We also provide initialization strategies for our algorithm and methods to estimate the number of groups in the dataset. Illustrations and simulations demonstrate the efficacy of our approach in a variety of settings and patterns of missing data. Our methods are also applied to the analysis of activation images obtained from a functional Magnetic Resonance Imaging experiment.Comment: 21 pages, 12 figures, 3 tables, in press, Statistical Analysis and Data Mining -- The ASA Data Science Journal, 201

    Copula-based fuzzy clustering of spatial time series

    Get PDF
    This paper contributes to the existing literature on the analysis of spatial time series presenting a new clustering algorithm called COFUST, i.e. COpula-based FUzzy clustering algorithm for Spatial Time series. The underlying idea of this algorithm is to perform a fuzzy Partitioning Around Medoids (PAM) clustering using copula-based approach to interpret comovements of time series. This generalisation allows both to extend usual clustering methods for time series based on Pearson’s correlation and to capture the uncertainty that arises assigning units to clusters. Furthermore, its flexibility permits to include directly in the algorithm the spatial information. Our approach is presented and discussed using both simulated and real data, highlighting its main advantages

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR OPTIMIZING THE DATA MINING PROCESS

    Get PDF
    In this paper, we depict some of the most widely used data mining algorithms that have an overwhelming utility and influence in the research community. A data mining algorithm can be regarded as a tool that creates a data mining model. After analyzing a set of data, an algorithm searches for specific trends and patterns, then defines the parameters of the mining model based on the results of this analysis. The above defined parameters play a significant role in identifying and extracting actionable patterns and detailed statistics. The most important algorithms within this research refer to topics like clustering, classification, association analysis, statistical learning, link mining. In the following, after a brief description of each algorithm, we analyze its application potential and research issues concerning the optimization of the data mining process. After the presentation of the data mining algorithms, we will depict the most important data mining algorithms included in Microsoft and Oracle software products, useful suggestions and criteria in choosing the most recommended algorithm for solving a mentioned task, advantages offered by these software products.data mining optimization, data mining algorithms, software solutions

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente

    Incremental Local Linear Fuzzy Classifier in Fisher Space

    Get PDF
    Optimizing the antecedent part of neurofuzzy system is an active research topic, for which different approaches have been developed. However, current approaches typically suffer from high computational complexity or lack of ability to extract knowledge from a given set of training data. In this paper, we introduce a novel incremental training algorithm for the class of neurofuzzy systems that are structured based on local linear classifiers. Linear discriminant analysis is utilized to transform the data into a space in which linear discriminancy of training samples is maximized. The neurofuzzy classifier is then built in the transformed space, starting from the simplest form (a global linear classifier). If the overall performance of the classifier was not satisfactory, it would be iteratively refined by incorporating additional local classifiers. In addition, rule consequent parameters are optimized using a local least square approach. Our refinement strategy is motivated by LOLIMOT, which is a greedy partition algorithm for structure training and has been successfully applied in a number of identification problems. The proposed classifier is compared to several benchmark classifiers on a number of well-known datasets. The results prove the efficacy of the proposed classifier in achieving high performance while incurring low computational effort
    corecore