13 research outputs found

    The hydrodynamics of water-walking insects and spiders

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 142-152).We present a combined experimental and theoretical investigation of the numerous hydrodynamic propulsion mechanisms employed by water-walking arthropods (insects and spiders). In our experimental study, high speed cinematography and flow visualization techniques are used to determine the form of the flows generated by water-walkers. In our supporting theoretical study we provide a formal fluid mechanical description of their locomotion. We focus on the most common means of walking on water such as the alternating tripod gait, rowing, galloping and leaping. We also examine quasi-static modes of propulsion in which the insect's legs are kept stationary: specifically, Marangoni propulsion and meniscus-climbing. Special attention is given to rationalizing the propulsion mechanisms of water-walking insects through consideration of the transfer of forces, momentum and energy between the creature and its environment.by David Lite Hu.Ph.D

    Biomimetic and Live Medusae Reveal the Mechanistic Advantages of a Flexible Bell Margin

    Get PDF
    Flexible bell margins are characteristic components of rowing medusan morphologies and are expected to contribute towards their high propulsive efficiency. However, the mechanistic basis of thrust augmentation by flexible propulsors remained unresolved, so the impact of bell margin flexibility on medusan swimming has also remained unresolved. We used biomimetic robotic jellyfish vehicles to elucidate that propulsive thrust enhancement by flexible medusan bell margins relies upon fluid dynamic interactions between entrained flows at the inflexion point of the exumbrella and flows expelled from under the bell. Coalescence of flows from these two regions resulted in enhanced fluid circulation and, therefore, thrust augmentation for flexible margins of both medusan vehicles and living medusae. Using particle image velocimetry (PIV) data we estimated pressure fields to demonstrate a mechanistic basis of enhanced flows associated with the flexible bell margin. Performance of vehicles with flexible margins was further enhanced by vortex interactions that occur during bell expansion. Hydrodynamic and performance similarities between robotic vehicles and live animals demonstrated that the propulsive advantages of flexible margins found in nature can be emulated by human-engineered propulsors. Although medusae are simple animal models for description of this process, these results may contribute towards understanding the performance of flexible margins among other animal lineages

    Hydrodynamics of swimming microorganisms in complex fluids

    Get PDF
    Swimming motion of microorganisms, such as spermatozoa, plankton, algae and bacteria, etc., ubiquitously occurs in nature. It affects many biological processes, including reproduction, infection and the marine life ecosystem. The hydrodynamic effects are important in microorganism swimming, their nutrient uptake, fertilization, collective motions and formation of colonies. In nature, microorganisms have evolved to use various fascinating ways for locomotion and transport. Different designs are also developed for the locomotion of artificial nano- and microswimmers. In this study, we use several different computational models to investigate the behavior of microswimmers. Microorganisms typically swim in the low Reynolds number regime, where inertia is negligible. They interact with each other, surfaces and external flow field. Microorganisms often swim in complex fluids, exhibiting non-Newtonian behavior, including viscoelasticity and shear-thinning viscosity. These biological materials contain network of glycoprotein fibers and gel-like polymers. Therefore on the scale of microorganisms, their fluid environments are heterogeneous rather than homogenous. In this study, we develop a computational platform to investigate swimming motion of a single and multiple microorganism(s) in the bulk fluid and near surfaces in complex fluids. We also investigate the role of fluid rheological properties and flow field on the migration of inert particles in a channel flow of viscoelastic fluids
    corecore