5,566 research outputs found

    Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae

    Get PDF
    Acknowledgements We thank Marco Thiel for assistance with data interpretation, Peter Sudbery for the provision of strains and Jeremy Craven for useful discussions. This work was supported by a BBSRC-DTG to D. D. T., NIH award DK083592 to F. J. B. and P. A. J., and a Royal Society URF UF080611 and MRC NIRG 90671 to A. C. B.Non peer reviewedPublisher PD

    Directional persistence & the optimality of run-and-tumble chemotaxis

    Get PDF
    E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of not, vert, similar63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter

    A Dynamically Diluted Alignment Model Reveals the Impact of Cell Turnover on the Plasticity of Tissue Polarity Patterns

    Full text link
    The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisation in response to an opposing instructive cue, which we here consider by example of experimentally inducible body axis inversions in planarian flatworms. Our dynamically diluted alignment model represents three processes: entrainment of cell polarity by a global signal, local cell-cell coupling aligning polarity among neighbours and cell turnover inserting initially unpolarised cells. We show that a persistent global orienting signal determines the final mean polarity orientation in this stochastic model. Combining numerical and analytical approaches, we find that neighbour coupling retards polarity pattern reorganisation, whereas cell turnover accelerates it. We derive a formula for an effective neighbour coupling strength integrating both effects and find that the time of polarity reorganisation depends linearly on this effective parameter and no abrupt transitions are observed. This allows to determine neighbour coupling strengths from experimental observations. Our model is related to a dynamic 88-Potts model with annealed site-dilution and makes testable predictions regarding the polarisation of dynamic systems, such as the planarian epithelium.Comment: Preprint as prior to first submission to Journal of the Royal Society Interface. 25 pages, 6 figures, plus supplement (18 pages, contains 1 table and 7 figures). A supplementary movie is available from https://dx.doi.org/10.6084/m9.figshare.c388781

    The world is not flat: Can people reorient using slope?

    Get PDF
    Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of a square, featureless enclosure tilted at a 5° angle. Finding it required using the vestibular, kinesthetic, and visual cues associated with the slope gradient. In Experiment 1, the overall sample performed above chance, showing that slope is sufficient for reorientation in a real environment. However, a sex difference emerged; men outperformed women by 1.4 SDs because they were more likely to use a slope-based strategy. In Experiment 2, attention was drawn to the slope, and participants were prompted to rely on it to solve the task; however, men still outperformed women, indicating a greater ability to use slope. In Experiment 3, we excluded the possibility that women\u27s disadvantage was due to wearing heeled footwear. In Experiment 4, women required more time than men to identify the uphill direction of the slope gradient; this suggests that, in a bottom-up fashion, a perceptual or attentional difficulty underlies women\u27s disadvantage in the ability to use slope and their decreased reliance on this cue. Overall, a bi-coordinate representation was used to find the goal: The target was encoded primarily with respect to the vertical axis and secondarily with respect to the orthogonal axis of the slope

    Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images

    Get PDF
    One of the spatial abilities that has recently revealed a remarkable variability in performance is that of using terrain slope to reorient. Previous studies have shown a very large disadvantage for females when the slope of the floor is the only information useful for encoding a goal location. However, the source of this sex difference is still unclear. The slope of the environment provides a directional source of information that is perceived through dissociable visual and kinesthetic sensory modalities. Here we focused on the visual information, and examined whether there are sex differences in the perception of a slope presented through 2-D images with a desktop computer connected to an eye-tracking device. Participants had to identify and point to the uphill direction by looking at different orientations of two virtual, slanted environments (one indoor and one outdoor). Men were quicker and more accurate than women, indicating that the female difficulty with slope emerges at an early, unisensory, perceptual level. However, the eye-tracking data revealed no sex differences in the slope cues used, providing no support to the hypothesis of sex-specific, visual-processing strategies. Interestingly, performance correlated with a test of mental rotation, and we speculate that the disadvantage in mental rotation ability might be an important factor responsible for females’ difficulty using slope

    Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images

    Get PDF
    One of the spatial abilities that has recently revealed a remarkable variability in performance is that of using terrain slope to reorient. Previous studies have shown a very large disadvantage for females when the slope of the floor is the only information useful for encoding a goal location. However, the source of this sex difference is still unclear. The slope of the environment provides a directional source of information that is perceived through dissociable visual and kinesthetic sensory modalities. Here we focused on the visual information, and examined whether there are sex differences in the perception of a slope presented through 2-D images with a desktop computer connected to an eye-tracking device. Participants had to identify and point to the uphill direction by looking at different orientations of two virtual, slanted environments (one indoor and one outdoor). Men were quicker and more accurate than women, indicating that the female difficulty with slope emerges at an early, unisensory, perceptual level. However, the eye-tracking data revealed no sex differences in the slope cues used, providing no support to the hypothesis of sex-specific, visual-processing strategies. Interestingly, performance correlated with a test of mental rotation, and we speculate that the disadvantage in mental rotation ability might be an important factor responsible for females’ difficulty using slope
    • …
    corecore