10,283 research outputs found

    The role of personal and shared displays in scripted collaborative learning

    Get PDF
    Over the last decades collaborative learning has gained immensely in importance and popularity due to its high potential. Unfortunately, learners rarely engage in effective learning activities unless they are provided with instructional support. In order to maximize learning outcomes it is therefore advisable to structure collaborative learning sessions. One way of doing this is using collaboration scripts, which define a sequence of activities to be carried out by the learners. The field of computer-supported collaborative learning (CSCL) produced a variety of collaboration scripts that proved to have positive effects on learning outcomes. These scripts provide detailed descriptions of successful learning scenarios and are therefore used as foundation for this thesis. In many cases computers are used to support collaborative learning. Traditional personal computers are often chosen for this purpose. However, during the last decades new technologies have emerged, which seem to be better suited for co-located collaboration than personal computers. Large interactive displays, for example, allow a number of people to work simultaneously on the same surface while being highly aware of the co-learners' actions. There are also multi-display environments that provide several workspaces, some of which may be shared, others may be personal. However, there is a lack of knowledge regarding the influence of different display types on group processes. For instance, it remains unclear in which cases shareable user interfaces should replace traditional single-user devices and when both personal and shared workspaces should be provided. This dissertation therefore explores the role of personal and shared workspaces in various situations in the area of collaborative learning. The research questions include the choice of technological devices, the seating arrangement as well as how user interfaces can be designed to guide learners. To investigate these questions a two-fold approach was chosen. First, a framework was developed, which supports the implementation of scripted collaborative learning applications. Second, different prototypes were implemented to explore the research questions. Each prototype is based on at least one collaboration script. The result is a set of studies, which contribute to answering the above-mentioned research questions. With regard to the choice of display environment the studies showed several reasons for integrating personal devices such as laptops. Pure tabletop applications with around-the-table seating arrangements whose benefits for collaboration are widely discussed in the relevant literature revealed severe drawbacks for text-based learning activities. The combination of laptops and an interactive wall display, on the other hand, turned out to be a suitable display environment for collaborative learning in several cases. In addition, the thesis presents several ways of designing the user interface in a way that guides learners through collaboration scripts

    Learning 21st century science in context with mobile technologies

    Get PDF
    The paper describes a project to support personal inquiry learning with handheld and desktop technology between formal and informal settings. It presents a trial of the technology and learning across a school classroom, sports hall, and library. The main aim of the study was to incorporate inquiry learning activities within an extended school science environment in order to investigate opportunities for technological mediations and to extract initial recommendations for the design of mobile technology to link inquiry learning across different contexts. A critical incident analysis was carried out to identify learning breakdowns and breakthroughs that led to design implications. The main findings are the opportunities that a combination of mobile and fixed technology bring to: manage the formation of groups, display live visualisations of student and teacher data on a shared screen to facilitate motivation and personal relevance, incorporate broader technical support, provide context-specific guidance on the sequence, reasons and aims of learning activities, offer opportunities to micro-sites for reflection and learning in the field, to explicitly support appropriation of data within inquiry and show the relation between specific activities and the general inquiry process

    Collaboration scripts - a conceptual analysis

    Get PDF
    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learners’ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts

    Specifying computer-supported collaboration scripts

    Get PDF
    Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)

    Towards a classroom ecology of devices: interfaces for collaborative scripts

    Get PDF

    Conceptualizing and supporting awareness of collaborative argumentation

    Get PDF
    In this thesis, we introduce “Argue(a)ware”. This is a concept for an instructional group awareness tool which aims at supporting social interactions in co-located computer-supported collaborative argumentation settings. Argue(a)ware is designed to support the social interactions in the content (i.e., task-related) and in the relational (i.e., social and interpersonal) space of co-located collaborative argumentation (Barron, 2003). The support for social interactions in the content space of collaboration is facilitated with the use of collaborative scripts for argumentation (i.e., instructions and scaffolds of argument construction) as well with the use of an argument mapping tool (i.e., visualization of argumentation outcomes in a form of diagrams) (Stegmann, Weinberger, & Fischer, 2007; van Gelder, 2013). The support for social interactions in the relational space of collaboration is facilitated with the use of different awareness mechanisms from the CSCL and the CSCW research fields (i.e., monitoring, mirroring and awareness notification tools). In this thesis, we examined how different awareness mechanisms facilitate the regulation of collaborative processes in the relational space of collaborative argumentation. Moreover, we studied how they affect the perceived team effectiveness (i.e., process outcome) and group performance (i.e., learning outcome) in the content space of collaboration. Thereby, we studied also the effects of the design of the awareness mechanisms on the application of the mechanisms and the user experience with them. In line with the design-based research paradigm, we attempted to simultaneously improve and study the effect of Argue(a)ware on collaborative argumentation (Herrington, McKenney, Reeves & Oliver, 2007). Through a series of design-based research studies we tested and refined the prototypes of the instructional group awareness tool. Moreover, we studied the ecological validity of dominant awareness and instructional theories in the context of co-located computer-supported collaborative argumentation. The underlying premise of the Argue(a)ware tool is that a combination of awareness and instructional support will result in increased awareness of collaboration, which will, in turn, mediate the regulation of collaborative processes. Moreover, we assume that successful regulation of collaboration will result in high perceived team effectiveness and the group performance in turn. In the first phase of development of the Argue(a)ware tool, we built support of the content space of collaborative argumentation with argument scaffold elements in a pedagogical face-to-face macro-script and an argument mapping tool. Furthermore, we extended the use of the script for supporting the relational space of collaboration by embedding awareness prompts for reflecting on collaboration during regular breaks in the script. Following, we designed two variations of the same pedagogical face-to-face macro-script which differ with respect to the type of group awareness prompts they used for supporting the relational space of collaboration i.e. behavioral and social. Upon designing the two script variations, we conducted a longitudinal, multiple-case study with ten groups of Media Informatics master students (n = 28, in groups of three or two, group=case, 4 sessions x70 min, Behavioural Awareness Script group= 5, Social Awareness Script group =5.) where each group was conceptualized as a case. Students collaborated every time for arguing to solve one different ill-structured problem and for transferring their arguments in the argument mapping tool Rationale. Thereby, we intended to investigate the effects of different awareness prompts on (a) collaborative metacognitive processes i.e., regulation, reflection, and evaluation (b) the relation between collaborative metacognitive processes and the quality of collaborative argumentation as well as (c) the impact of the two script variations on perceived team effectiveness and (d) what was experience with the different parts of the script variations in the two groups and how this fits into the design framework by Buder (2011). The quantitative analysis of argument outcomes from the groups yield no significant difference between the groups that worked with the BAS and the SAS variations. No significant difference between the script variations with respect to the results from the team effectiveness questionnaires was found either. Prompts for regulating collaboration processes were found to be the most successfully and consistently applied ones, especially in the most successful cases from both script variations and have influenced the argumentation outcomes. The awareness prompts afforded an explicit feedback display format (e.g. assessment of participation levels of self- and others) through discussion (Buder, 2011). The prompted explicit feedback display format (i.e., ratings of one’s self and of others) was criticized for running only on subjective awareness information on participation, contribution efforts and performance in the role. This resulted in evaluation apprehension phenomena (Cottrell, 1972) and evaluation bias (i.e., users may have not assessed themselves or others frankly) (Ghadirian et al., 2016). The awareness prompts for reflection and evaluation did reveal frictions in the plan making process (i.e., dropping out of the plan for collaboration) in the least successful groups. Problems with group dynamics (i.e., free-loading and presence of dominance) but were not powerful enough to trigger the desired changes in the behaviors of the students. The prompts for evaluating the collaboration in both script variations had no apparent connection to argumentation outcomes. The results indicated that dominant presence phenomena inhibited substantive argumentation in the least successful groups. They also indicated that the role-assignment influenced the group dynamics by helping student’s making clear the labor division in the group. In the second phase of development of the Argue(a)ware tool, the focus is on structuring and regulating social interactions in the relational space of collaborative argumentation by means of scripted roles and role-based awareness scaffolds. We designed support for mirroring participation in the role (i.e., a role-based awareness visualization) and support for monitoring participation, coordination and collaboration efforts in the role (i.e., self-assessment questionnaire). Moreover, we designed additional support for guiding participation in the role i.e., role-based reminders as notifications on smartwatches. In a between-subjects study, ten groups of three university students each (n = 30, Mage =22y, mixed educational backgrounds, 1x90min) worked with two variants of the Argue(a)ware for arguing to solve one ill-structured problem and transferring their arguments in the argument mapping tool Rationale. Next, to that, students should monitor their progress in their role with the role-based awareness visualization and the self-assessment questionnaire with the basic awareness support (role-based awareness visualization with the intermediate self-assessment) and the enhanced awareness support (additional role-based awareness reminders). Half of the groups worked only with the role-based awareness visualization and the self-assessment questionnaire (Basic Awareness Condition-BAC) while the other half groups received additional text-based awareness notifications via smartwatches that were sent to students privately (Enhanced Awareness Condition- EAC). Thereby, we tested the use of different degrees of awareness support in the two conditions with respect to their impact on a) self-perceived awareness of performance in the role and of collaboration and coordination efforts (measured with the same questionnaire at two time points), b) on perceive team effectiveness, c) group performance. We hypothesized that students in EAC will perform better thanks to the additional awareness reminders that increased the directivity and influenced their awareness in the role. The mixed methods analysis revealed that the awareness reminders, when perceived on time, succeeded in guiding collaboration (i.e., resulted in more role-specific behaviors). Students in the EAC condition improved their awareness over time (between the two measurements). These results indicated that enhanced awareness support in the form of additional guidance through awareness reminders can boost the awareness of students’ performance in the role as well as the awareness of their coordination and collaboration efforts over time by directing them back to the mirroring and monitoring tools. Moreover, students in EAC exhibited higher perceived team effectiveness than the students in BAC. However, no significant differences in building of shared mental models or performing in mutual performance monitoring were found between the groups. However, students in BAC and EAC did not differ significantly with respect to the formal correctness or evidence sufficiency of their group argumentation outcomes. Moreover, technical difficulties with the smartphones used as delivery devices for the awareness reminders (i.e., low vibration modus) hindered the timely perception of the reminders and thus their effect on participation. Finally, the questionnaire on the experience with the different parts of Argue(a)ware system indicated the need for exploring further media for supporting the awareness reminders to avoid the overwhelming effects of the multiple displays of the system and enhancing higher perceptiveness of the reminders with low interruption costs for other group members. The rather high satisfaction with the use of the role-based awareness visualization and the positive comments on the motivating aspects of monitoring how the personal success contributes to the group performance indicate that the group mirror succeeded in making group norms visible to group members in a non-obtrusive way. The high interpersonal comparability of performances without moderating the group ‘s interaction directly in the basic awareness condition was proven to be the favored design approach compared to the combination of group mirror and awareness reminders in the enhance awareness condition. In the third phase of development of Argue(a)ware, we focused on designing and testing different notification modes on different ubiquitous mobile devices for facilitating the next prototype of a notification system for role-based awareness reminders. Thereby, the aim of the system was again to guide students’ active participation in collaborative argumentation. More specifically, we focused on raising students’ attention to the reminders and triggering a prompter reaction to the contents of the reminders whilst avoiding a high interruption cost for the primary task (i.e., arguing for solving the problem at hand) in the group. These goals were translated into design challenges for the design of the role-based awareness notification system. The system should afford low interruptions, high reaction and high comprehension of notifications. Notification systems with this particular configuration of IRC values are known as "secondary display" systems (McCrickard et al., 2003). Next, we designed three low-fidelity prototypes for a role-based notification system for delivering awareness reminders: The first ran on a smartwatch and afforded text-based information with vibration and light notification modalities. The second ran on smartphone and afforded text-based information with vibrotactile and light-based notification modalities. Finally, the third prototype run on a smart-ring which afforded graphical- based (i.e. abstract light) information with and light and vibration notification modalities. To test the suitability of these prototypes for acting as “secondary display” systems, we conducted a within-subjects user study where three university students (n= 3, Mage=28, mixed educational background) argued for solving three different problem cases and producing an argument map in each of the three consecutive meetings (max 90min) in the Argue(a)ware instructional system. Students were assigned the roles of writer, corrector and devil`s advocate and were instructed to maintain the same role across the three meetings. In each meeting, students worked with a different role-based awareness notification prototype, where they received a notification indicating their balloon is not growing bigger after five minutes of not exhibiting any role-specific behaviors. The role-based awareness notification prototypes aimed at introducing timely interventions which would prompt students to check on their own progress in the role and the group progress as visualized by the role-based awareness visualization on the large display. Ultimately, this should prompt them to reflect on the awareness information from the visualization and adapt their behaviors to the desired behavior standards over time. Results showed that students perceived the notifications from all media mostly based on vibration cues. Thereby, the vibration cues on the wrist (smartwatch) were considered the least disruptive to the main task compared to the vibration cues on finger (smartwatch) and the vibration cues on the desk (smartphone). Students also declared that vibration cues on wrist prompted the fastest reaction i.e., attending to notification by interacting with the smartwatch. These results indicate that vibration cues on the wrist can be a suitable notification mechanism for increasing the perceived urgency of the message and prompting the reaction on it without causing great distraction to the main task, as studies previous studies showed before (Pielot, Church, & deOliveira, 2013; Hernández-Leo, Balestrini, Nieves & Blat, 2012). Based on very limited qualitative data on light as notification modality and awareness representation type no inferences could be made about its influence on the cost of interruption, reaction and comprehension parameters comprehensiveness. The qualitative and quantitative data on the experience with different media as awareness notification systems indicate that smartwatches may be the most suitable medium for acting as awareness notification medium with a “secondary display” IRC configuration (low-high-high). However, this inference needs to be tested in terms of a follow up study. In the next study, the great limitations of study (limited data due to low power and mal-structured measurement instruments) need to be repaired. Finally, the focus should be on comparing notification modalities of one medium (e.g., smartphone) based on a larger set of participants and with the use of objective measurements for the IRC parameter values (Chewar, McCrickard & Sutcliffe, 2004). Finally, we draw conclusions based on the findings from the three studies with respect to the role of awareness mechanisms for facilitating collaborative processes and outcomes and provide replicable and generalizable design principles. These principles are formed as heuristic statements and are subject to refinement by further research (Bell, Hoadley, & Linn, 2004; Van den Akker, 1999). We conclude with the limitations of the study and ideas for future work with Argue(a)ware

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications

    COLLABORATIVE DEVELOPMENT IN THE VIRTUAL WORLD: DISCOURSE, DIGITAL ARTEFACTS AND THE CONSTRUCTION OF INTERSUBJECTIVE MEANING

    Get PDF
    The misconception of virtual worlds as „games‟ has prevented these immersive environments from being treated as legitimate areas of inquiry by the Information Systems community. In this paper we argue that these environments challenge our conceptualisation of technology mediation due to the immersive and co-created nature of the digital environment, and particularly, challenges our understanding of information technology mediated collaborative development activities. Acknowledging the interrelated roles played by both human and non-human actors within virtual worlds, we investigate the construction of intersubjective meaning within three small synchronous collaborative development groups. Our findings highlight the complex roles of mediators within such collaborative activities in immersive environments, and the ways in which such mediation manifests through integrated socio-technical systems that are culturally developed
    corecore