862 research outputs found

    Assessing the effectiveness of sequence diagrams in the comprehension of functional requirements: results from a family of five experiments

    Full text link
    Modeling is a fundamental activity within the requirements engineering process and concerns the construction of abstract descriptions of requirements that are amenable to interpretation and validation. The choice of a modeling technique is critical whenever it is necessary to discuss the interpretation and validation of requirements. This is particularly true in the case of functional requirements and stakeholders with divergent goals and different backgrounds and experience. This paper presents the results of a family of experiments conducted with students and professionals to investigate whether the comprehension of functional requirements is influenced by the use of dynamic models that are represented by means of the UML sequence diagrams. The family contains five experiments performed in different locations and with 112 participants of different abilities and levels of experience with UML. The results show that sequence diagrams improve the comprehension of the modeled functional requirements in the case of high ability and more experienced participants.The authors wish to thank all the participants in the experiments. This research was partially supported by the MULTIPLE project (with ref. TIN2009-13838).Abrahao Gonzales, SM.; Gravino, .C.; Insfrán Pelozo, CE.; Scaniello, .G.; Tortora, .G. (2013). Assessing the effectiveness of sequence diagrams in the comprehension of functional requirements: results from a family of five experiments. IEEE Transactions on Software Engineering. 39(3):327-342. https://doi.org/10.1109/TSE.2012.27S32734239

    Assessing the Effectiveness of Sequence Diagrams in the Comprehension of Functional Requirements: Results from a Family of Five Experiments

    Get PDF
    Modeling is a fundamental activity within the requirements engineering process and concerns the construction of abstract descriptions of requirements that are amenable to interpretation and validation. The choice of a modeling technique is critical whenever it is necessary to discuss the interpretation and validation of requirements. This is particularly true in the case of functional requirements and stakeholders with divergent goals and different backgrounds and experience. This paper presents the results of a family of experiments conducted with students and professionals to investigate whether the comprehension of functional requirements is influenced by the use of dynamic models that are represented by means of the UML sequence diagrams. The family contains five experiments performed in different locations and with 112 participants of different abilities and levels of experience with the UML. The results show that sequence diagrams improve the comprehension of the modeled functional requirements in the case of high ability and more experienced participants

    Modeling functional requirements using tacit knowledge: a design science research methodology informed approach

    Get PDF
    The research in this paper adds to the discussion linked to the challenge of capturing and modeling tacit knowledge throughout software development projects. The issue emerged when modeling functional requirements during a project for a client. However, using the design science research methodology at a particular point in the project helped to create an artifact, a functional requirements modeling technique, that resolved the issue with tacit knowledge. Accordingly, this paper includes research based upon the stages of the design science research methodology to design and test the artifact in an observable situation, empirically grounding the research undertaken. An integral component of the design science research methodology, the knowledge base, assimilated structuration and semiotic theories so that other researchers can test the validity of the artifact created. First, structuration theory helped to identify how tacit knowledge is communicated and can be understood when modeling functional requirements for new software. Second, structuration theory prescribed the application of semiotics which facilitated the development of the artifact. Additionally, following the stages of the design science research methodology and associated tasks allows the research to be reproduced in other software development contexts. As a positive outcome, using the functional requirements modeling technique created, specifically for obtaining tacit knowledge on the software development project, indicates that using such knowledge increases the likelihood of deploying software successfully

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    An Experimental Scrutiny of Visual Design Modelling: VCL up against UML+OCL

    Get PDF
    The graphical nature of prominent modelling notations, such as the standards UML and SysML, enables them to tap into the cognitive benefits of diagrams. However, these notations hardly exploit the cognitive potential of diagrams and are only partially graphical with invariants and operations being expressed textually. The Visual Contract Language (VCL) aims at improving visual modelling; it tries to (a) maximise diagrammatic cognitive effectiveness, (b) increase visual expressivity, and (c) level of rigour and formality. It is an alternative to UML that does largely pictorially what is traditionally done textually. The paper presents the results of a controlled experiment carried out four times in different academic settings and involving 43 participants, which compares VCL against UML and OCL and whose goal is to provide insight on benefits and limitations of visual modelling. The paper's hypotheses are evaluated using a crossover design with the following tasks: (i) modelling of state space, invariants and operations, (ii) comprehension of modelled problem, (iii) detection of model defects and (iv) comprehension of a given model. Although visual approaches have been used and advocated for decades, this is the first empirical investigation looking into the effects of graphical expression of invariants and operations on modelling and model usage tasks. Results suggest VCL benefits in defect detection, model comprehension, and modelling of operations, providing some empirical evidence on the benefits of graphical software design

    VMTL: a language for end-user model transformation

    Get PDF
    • …
    corecore