82 research outputs found

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation

    Full text link
    The lack of haptic feedback in Robot-assisted Minimally Invasive Surgery (RMIS) is a potential barrier to safe tissue handling during surgery. Bayesian modeling theory suggests that surgeons with experience in open or laparoscopic surgery can develop priors of tissue stiffness that translate to better force estimation abilities during RMIS compared to surgeons with no experience. To test if prior haptic experience leads to improved force estimation ability in teleoperation, 33 participants were assigned to one of three training conditions: manual manipulation, teleoperation with force feedback, or teleoperation without force feedback, and learned to tension a silicone sample to a set of force values. They were then asked to perform the tension task, and a previously unencountered palpation task, to a different set of force values under teleoperation without force feedback. Compared to the teleoperation groups, the manual group had higher force error in the tension task outside the range of forces they had trained on, but showed better speed-accuracy functions in the palpation task at low force levels. This suggests that the dynamics of the training modality affect force estimation ability during teleoperation, with the prior haptic experience accessible if formed under the same dynamics as the task.Comment: 12 pages, 8 figure

    Multi-robot cooperative platform : a task-oriented teleoperation paradigm

    Get PDF
    This thesis proposes the study and development of a teleoperation system based on multi-robot cooperation under the task oriented teleoperation paradigm: Multi-Robot Cooperative Paradigm, MRCP. In standard teleoperation, the operator uses the master devices to control the remote slave robot arms. These arms reproduce the desired movements and perform the task. With the developed work, the operator can virtually manipulate an object. MRCP automatically generates the arms orders to perform the task. The operator does not have to solve situations arising from possible restrictions that the slave arms may have. The research carried out is therefore aimed at improving the accuracy teleoperation tasks in complex environments, particularly in the field of robot assisted minimally invasive surgery. This field requires patient safety and the workspace entails many restrictions to teleoperation. MRCP can be defined as a platform composed of several robots that cooperate automatically to perform a teleoperated task, creating a robotic system with increased capacity (workspace volume, accessibility, dexterity ...). The cooperation is based on transferring the task between robots when necessary to enable a smooth task execution. The MRCP control evaluates the suitability of each robot to continue with the ongoing task and the optimal time to execute a task transfer between the current selected robot and the best candidate to continue with the task. From the operator¿s point of view, MRCP provides an interface that enables the teleoperation though the task-oriented paradigm: operator orders are translated into task actions instead of robot orders. This thesis is structured as follows: The first part is dedicated to review the current solutions in the teleoperation of complex tasks and compare them with those proposed in this research. The second part of the thesis presents and reviews in depth the different evaluation criteria to determine the suitability of each robot to continue with the execution of a task, considering the configuration of the robots and emphasizing the criterion of dexterity and manipulability. The study reviews the different required control algorithms to enable the task oriented telemanipulation. This proposed teleoperation paradigm is transparent to the operator. Then, the Thesis presents and analyses several experimental results using MRCP in the field of minimally invasive surgery. These experiments study the effectiveness of MRCP in various tasks requiring the cooperation of two hands. A type task is used: a suture using minimally invasive surgery technique. The analysis is done in terms of execution time, economy of movement, quality and patient safety (potential damage produced by undesired interaction between the tools and the vital tissues of the patient). The final part of the thesis proposes the implementation of different virtual aids and restrictions (guided teleoperation based on haptic visual and audio feedback, protection of restricted workspace regions, etc.) using the task oriented teleoperation paradigm. A framework is defined for implementing and applying a basic set of virtual aids and constraints within the framework of a virtual simulator for laparoscopic abdominal surgery. The set of experiments have allowed to validate the developed work. The study revealed the influence of virtual aids in the learning process of laparoscopic techniques. It has also demonstrated the improvement of learning curves, which paves the way for its implementation as a methodology for training new surgeons.Aquesta tesi doctoral proposa l'estudi i desenvolupament d'un sistema de teleoperació basat en la cooperació multi-robot sota el paradigma de la teleoperació orientada a tasca: Multi-Robot Cooperative Paradigm, MRCP. En la teleoperació clàssica, l'operador utilitza els telecomandaments perquè els braços robots reprodueixin els seus moviments i es realitzi la tasca desitjada. Amb el treball realitzat, l'operador pot manipular virtualment un objecte i és mitjançant el MRCP que s'adjudica a cada braç les ordres necessàries per realitzar la tasca, sense que l'operador hagi de resoldre les situacions derivades de possibles restriccions que puguin tenir els braços executors. La recerca desenvolupada està doncs orientada a millorar la teleoperació en tasques de precisió en entorns complexos i, en particular, en el camp de la cirurgia mínimament invasiva assistida per robots. Aquest camp imposa condicions de seguretat del pacient i l'espai de treball comporta moltes restriccions a la teleoperació. MRCP es pot definir com a una plataforma formada per diversos robots que cooperen de forma automàtica per dur a terme una tasca teleoperada, generant un sistema robòtic amb capacitats augmentades (volums de treball, accessibilitat, destresa,...). La cooperació es basa en transferir la tasca entre robots a partir de determinar quin és aquell que és més adequat per continuar amb la seva execució i el moment òptim per realitzar la transferència de la tasca entre el robot actiu i el millor candidat a continuar-la. Des del punt de vista de l'operari, MRCP ofereix una interfície de teleoperació que permet la realització de la teleoperació mitjançant el paradigma d'ordres orientades a la tasca: les ordres es tradueixen en accions sobre la tasca en comptes d'estar dirigides als robots. Aquesta tesi està estructurada de la següent manera: Primerament es fa una revisió de l'estat actual de les diverses solucions desenvolupades actualment en el camp de la teleoperació de tasques complexes, comparant-les amb les proposades en aquest treball de recerca. En el segon bloc de la tesi es presenten i s'analitzen a fons els diversos criteris per determinar la capacitat de cada robot per continuar l'execució d'una tasca, segons la configuració del conjunt de robots i fent especial èmfasi en el criteri de destresa i manipulabilitat. Seguint aquest estudi, es presenten els diferents processos de control emprats per tal d'assolir la telemanipulació orientada a tasca de forma transparent a l'operari. Seguidament es presenten diversos resultats experimentals aplicant MRCP al camp de la cirurgia mínimament invasiva. En aquests experiments s'estudia l'eficàcia de MRCP en diverses tasques que requereixen de la cooperació de dues mans. S'ha escollit una tasca tipus: sutura amb tècnica de cirurgia mínimament invasiva. L'anàlisi es fa en termes de temps d'execució, economia de moviment, qualitat i seguretat del pacient (potencials danys causats per la interacció no desitjada entre les eines i els teixits vitals del pacient). Finalment s'ha estudiat l'ús de diferents ajudes i restriccions virtuals (guiat de la teleoperació via retorn hàptic, visual o auditiu, protecció de regions de l'espai de treball, etc) dins el paradigma de teleoperació orientada a tasca. S'ha definint un marc d'aplicació base i implementant un conjunt de restriccions virtuals dins el marc d'un simulador de cirurgia laparoscòpia abdominal. El conjunt d'experiments realitzats han permès validar el treball realitzat. Aquest estudi ha permès determinar la influencia de les ajudes virtuals en el procés d'aprenentatge de les tècniques laparoscòpiques. S'ha evidenciat una millora en les corbes d'aprenentatge i obre el camí a la seva implantació com a metodologia d'entrenament de nous cirurgians.Postprint (published version

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi

    An Energy-Based Approach for n-dof Passive Dual-user Haptic Training Systems

    Get PDF
    International audienceThis paper introduces a dual-user training system whose design is based on an energetic approach. This kind of system is useful for supervised hands-on training where a trainer interacts with a trainee through two haptic devices, in order to practice on a manual task performed on a virtual or teleoperated robot (for example for an MIS task in a surgical context). This paper details the proof of stability of an Energy Shared Control (ESC) architecture we previously introduced for one degree of freedom (d.o.f.) devices. An extension to multiple degrees of freedom is proposed, along with an enhanced version of the Adaptive Authority Adjustment (AAA) function. Experiments are carried out with 3 d.o.f. haptic devices in free motion as well as in contact contexts in order to show the relevance of this architecture

    Bimanual robot control for surface treatment tasks

    Full text link
    This is an Author's Accepted Manuscript of an article published in Alberto García, J. Ernesto Solanes, Luis Gracia, Pau Muñoz-Benavent, Vicent Girbés-Juan & Josep Tornero (2022) Bimanual robot control for surface treatment tasks, International Journal of Systems Science, 53:1, 74-107, DOI: 10.1080/00207721.2021.1938279 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207721.2021.1938279[EN] This work develops a method to perform surface treatment tasks using a bimanual robotic system, i.e. two robot arms cooperatively performing the task. In particular, one robot arm holds the work-piece while the other robot arm has the treatment tool attached to its end-effector. Moreover, the human user teleoperates all the six coordinates of the former robot arm and two coordinates of the latter robot arm, i.e. the teleoperator can move the treatment tool on the plane given by the work- piece surface. Furthermore, a force sensor attached to the treatment tool is used to automatically attain the desired pressure between the tool and the workpiece and to automatically keep the tool orientation orthogonal to the workpiece surface. In addition, to assist the human user during the teleoperation, several constraints are defined for both robot arms in order to avoid exceeding the allowed workspace, e.g. to avoid collisions with other objects in the environment. The theory used in this work to develop the bimanual robot control relies on sliding mode control and task prioritisation. Finally, the feasibility and effectiveness of the method are shown through experimental results using two robot arms.This work was supported by Generalitat Valenciana [grant numbers ACIF/2019/007 and GV/2021/181] and Spanish Ministry of Science and Innovation [grant number PID2020117421RB-C21].García-Fernández, A.; Solanes, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Girbés-Juan, V.; Tornero, J. (2022). Bimanual robot control for surface treatment tasks. International Journal of Systems Science. 53(1):74-107. https://doi.org/10.1080/00207721.2021.19382797410753

    Bimanual robot control for surface treatment tasks

    Get PDF
    This work develops a method to perform surface treatment tasks using a bimanual robotic system, i.e. two robot arms cooperatively performing the task. In particular, one robot arm holds the workpiece while the other robot arm has the treatment tool attached to its end-effector. Moreover, the human user teleoperates all the six coordinates of the former robot arm and two coordinates of the latter robot arm, i.e. the teleoperator can move the treatment tool on the plane given by the workpiece surface. Furthermore, a force sensor attached to the treatment tool is used to automatically attain the desired pressure between the tool and the workpiece and to automatically keep the tool orientation orthogonal to the workpiece surface. In addition, to assist the human user during the teleoperation, several constraints are defined for both robot arms in order to avoid exceeding the allowed workspace, e.g. to avoid collisions with other objects in the environment. The theory used in this work to develop the bimanual robot control relies on sliding mode control and task prioritisation. Finally, the feasibility and effectiveness of the method are shown through experimental results using two robot arms

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000
    corecore