1,664 research outputs found

    Vehicle routing with varying levels of demand information

    Get PDF
    The vehicle routing problem is the problem of serving a set of customers with a fleet of vehicles such that the travel costs of those vehicles are minimized, while making sure each vehicle starts and ends at a central depot. In this thesis, we focus on exact methodology for the vehicle routing problem with three different levels of demand information: deterministic, stochastic and sensor-driven.First, we look at set partitioning and set covering problems that are solved by a branch-price-and-cut algorithm. We introduce a new category of cuts, called “resource-robust”, which do not complicate the pricing problem if specific resources are included. We create new cuts for the capacitated vehicle routing problem, with deterministic demands, that are resource-robust when the ng-route relaxation is used, which leads to speedups for certain instances.Second, we focus on the vehicle routing problem with stochastic demands. We develop a state-of-the-art integer L-shaped method to solve the problem to optimality. The algorithm uses all techniques from the literature, improves on some of these and uses new valid inequalities. Using this algorithm, we also investigate three commonly-made assumptions in the literature from a theoretical and computational perspective.Third, we investigate a single-period waste collection problem with sensors. We can adjust our routing decisions based on the sensor readings. We derive theoretical properties and develop an algorithm to approximate the cost savings achieved given a certain sensor placement. Then, we investigate the effectiveness of several sensor placement rules and how they fare under sensor uncertainty.<br/

    Models and Metaheuristics For Vehicle Routing Problems Under Uncertainty

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Within the logistics and transportation industry, the vehicle routing problem (VRP) bears significant importance in many real-life logistics activities. As one of the most important and widely studied combinatorial optimization problems in the past sixty years, the VRP, also known as the capacitated VRP (CVRP), focuses on minimizing transportation costs: it concerns how to serve a set of geographically dispersed customers with a fleet of homogeneous vehicles at minimum cost. Given the potentially substantial savings from optimizing routing strategies in practical logistics activities, various complex extensions of the CVRP inspired from real-life applications have increasingly received attention. In the CVRP and most of its extensions, a common assumption is that the values of all problem parameters are readily available and can be precisely known in advance. However, this assumption does not invariably hold in many practical routing problems due to uncertainty, which could be secondary to factors such as imprecise information on customer demands, unfixed service times for customers, and varying travel times for vehicles. Thus, routing strategies generated without considering uncertainty may ultimately be found infeasible in real-life applications. This thesis studies three important extensions of the CVRP under uncertainty. Firstly, we study the vehicle routing problem with time windows considering uncertainty in customer demands, service times, and travel times. Secondly, we study the vehicle routing problem with simultaneous pickup and delivery and time windows under pickup demand and travel time uncertainty. Finally, we study the two-echelon multiple-trip vehicle routing problem with time windows and satellite synchronization under customer demand uncertainty. To model these problems, we adopt the robust optimization paradigm and present three robust mathematical formulations with novel uncertainty sets. Given their complexity, we propose efficient metaheuristic solution approaches. We conduct extensive numerical experiments which employ benchmark instances from the literature. The computational results show that the proposed solution approaches can generate high-quality deterministic and robust solutions for large-sized instances within a reasonable running time. In addition, Monte Carlo simulation tests are designed to evaluate the robustness of the obtained solutions. Useful managerial insights for decision-makers in the logistics and transportation industry are derived from a comprehensive analysis of the computational results

    On the heterogeneous vehicle routing problem under demand uncertainty

    Get PDF
    In this paper we study the heterogeneous vehicle routing problem under demand uncertainty, on which there has been little research to our knowledge. The focus of the paper is to provide a strong formulation that also easily allows tractable robust and chance-constrained counterparts. To this end, we propose a basic Miller-Tucker-Zemlin (MTZ) formulation with the main advantage that uncertainty is restricted to the right-hand side of the constraints. This leads to compact and tractable counterparts of demand uncertainty. On the other hand, since the MTZ formulation is well known to provide a rather weak linear programming relaxation, we propose to strengthen the initial formulation with valid inequalities and lifting techniques and, furthermore, to dynamically add cutting planes that successively reduce the polyhedral region using a branch-and-cut algorithm. We complete our study with extensive computational analysis with different performance measures on different classes of instances taken from the literature. In addition, using simulation, we conduct a scenario-based risk level analysis for both cases where either unmet demand is allowed or not

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    Demand robust counterpart open capacitated vehicle routing problem time windows and deadline model of garbage transportation with LINGO 13.0

    Get PDF
    Demand robust counterpart-open capacitated vehicle routing problem with time windows and deadline (DRC-OCVRPtw,d) model formed and explained in this paper, is the model used to find the minimum distance and the time needed for vehicles to transport garbage in Sukarami Sub-District, Palembang that consists of the time it takes for the vehicle to pass through the route. Time needed to transport garbage to the vehicle is called time windows. Combination of the thoses times is called deadline. The farther the distance passed by vehicle and the more garbage transported, the longer the deadline is needed. This DRC-OCVRPtw,d model is completed by LINGO 13.0 to obtain the optimal route and time deadline for Sukarami Sub-District. The model shows that the improved model of open vehicle routing problem involving the robustness, time windows and deadline can achieve the optimal routes that enable driver to save operational time in picking up the garbage compared to similar problem not involving no-time windows and deadline stated in previous research

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches
    corecore