2,898 research outputs found

    Random walk theory of jamming in a cellular automaton model for traffic flow

    Full text link
    The jamming behavior of a single lane traffic model based on a cellular automaton approach is studied. Our investigations concentrate on the so-called VDR model which is a simple generalization of the well-known Nagel-Schreckenberg model. In the VDR model one finds a separation between a free flow phase and jammed vehicles. This phase separation allows to use random walk like arguments to predict the resolving probabilities and lifetimes of jam clusters or disturbances. These predictions are in good agreement with the results of computer simulations and even become exact for a special case of the model. Our findings allow a deeper insight into the dynamics of wide jams occuring in the model.Comment: 16 pages, 7 figure

    Reliability-based lifetime performance analysis of long-span bridges

    Get PDF
    2010 Fall.Includes bibliographical references.Long-span bridges generally serve as the significant hub in the transportation system for normal transportation and critical evacuation paths when any disaster happens. Thus, the safety and serviceability of long-span bridges are related to huge economic cost and safety of thousands of lives. The objective of this research is to establish a general framework to evaluate the lifetime performance of long-span bridges through taking account of more realistic load situations, such as traffic flow and wind environment. After some background information is introduced in Chapter 1, Chapter 2 covers the modeling of stochastic traffic flow for the bridge infrastructure system in a more realistic way by using the Cellular Automaton model. Based on the detailed information of individual vehicles of the stochastic traffic flow, the general framework to study Bridge/Traffic/Wind dynamic performance is developed in Chapter 3. Chapter 3 and Chapter 4 also report the results of the bridge's serviceability under normal and extreme loads events, respectively. In Chapter 5, the scenario-based fatigue model is further developed based on the dynamic framework developed in Chapter 3. Finally, the reliability-based analysis is conducted in Chapter 6 to study the fatigue damage caused by the coupling effects among bridge, traffic flow and wind throughout the bridge's service life

    Cellular automata approach to three-phase traffic theory

    Full text link
    The cellular automata (CA) approach to traffic modeling is extended to allow for spatially homogeneous steady state solutions that cover a two dimensional region in the flow-density plane. Hence these models fulfill a basic postulate of a three-phase traffic theory proposed by Kerner. This is achieved by a synchronization distance, within which a vehicle always tries to adjust its speed to the one of the vehicle in front. In the CA models presented, the modelling of the free and safe speeds, the slow-to-start rules as well as some contributions to noise are based on the ideas of the Nagel-Schreckenberg type modelling. It is shown that the proposed CA models can be very transparent and still reproduce the two main types of congested patterns (the general pattern and the synchronized flow pattern) as well as their dependence on the flows near an on-ramp, in qualitative agreement with the recently developed continuum version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002. J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different than in previously considered CA traffic models. The probability of the breakdown phenomenon (i.e., of the phase transition from free flow to synchronized flow) as function of the flow rate to the on-ramp and of the flow rate on the road upstream of the on-ramp is investigated. The capacity drops at the on-ramp which occur due to the formation of different congested patterns are calculated.Comment: 55 pages, 24 figure

    Zero range model of traffic flow

    Get PDF
    A multi--cluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behaviour of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one--step master equation in one dimension. It provides an approximate mean--field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux--density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.Comment: 10 pages, 13 figures, small changes are made according to finally accepted version for publication in Phys. Rev.

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator
    • …
    corecore