29 research outputs found

    Design and implementation of extensible middleware for non-repudiable interactions

    Get PDF
    PhD ThesisNon-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task. A lot of supporting infrastructure is required which adds large expense to the interaction. This infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design and implementation of such an infrastructure. The runtime environment makes use of several trusted services to achieve external verification of the audit trail. Non-repudiation is achieved by executing fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a participant to protect their own interests by preventing any party from gaining an advantage by misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated implementation of protocols. Extensibility is achieved by implementing the infrastructure in middleware and by presenting a large variety of non-repudiable business interaction patterns to the application (a non-repudiable interaction pattern is a higher level protocol composed from one or more non-repudiation protocols). The middleware is highly configurable allowing new non-repudiation protocols and interaction patterns to be easily added, without disrupting the application. This thesis presents a rigorous mechanism for automated implementation of non-repudiation protocols. This ensures that the protocol being executed is that which was intended and verified by the protocol designer. A family of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite state machines to be produced. These finite state machines can be used to maintain protocol state and manage the sending and receiving of appropriate protocol messages. A concrete implementation of the run-time environment and the protocol generation techniques is presented. This implementation is based on industry supported Web service standards and services.EPSRC, The Hewlett Packard Arjuna La

    Design and implementation of extensible middleware for non-repudiable interactions

    Get PDF
    Non-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task. A lot of supporting infrastructure is required which adds large expense to the interaction. This infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design and implementation of such an infrastructure. The runtime environment makes use of several trusted services to achieve external verification of the audit trail. Non-repudiation is achieved by executing fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a participant to protect their own interests by preventing any party from gaining an advantage by misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated implementation of protocols. Extensibility is achieved by implementing the infrastructure in middleware and by presenting a large variety of non-repudiable business interaction patterns to the application (a non-repudiable interaction pattern is a higher level protocol composed from one or more non-repudiation protocols). The middleware is highly configurable allowing new non-repudiation protocols and interaction patterns to be easily added, without disrupting the application. This thesis presents a rigorous mechanism for automated implementation of non-repudiation protocols. This ensures that the protocol being executed is that which was intended and verified by the protocol designer. A family of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite state machines to be produced. These finite state machines can be used to maintain protocol state and manage the sending and receiving of appropriate protocol messages. A concrete implementation of the run-time environment and the protocol generation techniques is presented. This implementation is based on industry supported Web service standards and services.EThOS - Electronic Theses Online ServiceEPSRC : Hewlett Packard Arjuna LabGBUnited Kingdo

    Middleware support for non-repudiable business-to-business interactions

    Get PDF
    The wide variety of services and resources available over the Internet presents new opportunities for organisations to collaborate to reach common goals. For example, business partners wish to access each other’s services and share information along the supply chain in order to compete more successfully in the delivery of goods or services to the ultimate customer. This can lead to the investment of significant resources by business partners in the resulting collaboration. In the context of such high value business-to-business (B2B) interactions it is desirable to regulate (monitor and control) the behaviour of business partners to ensure that they comply with agreements that govern their interactions. Achieving this regulation is challenging because, while wishing to collaborate, organisations remain autonomous and may not unguardedly trust each other. Two aspects must be addressed: (i) the need for high-level mechanisms to encode agreements (contracts) between the interacting parties such that they can be used for run-time monitoring and enforcement, and (ii) systematic support to monitor a given interaction for conformance with contract and to ensure accountability. This dissertation concerns the latter aspect — the definition, design and implementation of underlying middleware support for the regulation of B2B interactions. To this end, two non-repudiation services are identified — non-repudiable service invocation and non-repudiable information sharing. A flexible nonrepudiation protocol execution framework supports the delivery of the identified services. It is shown how the services can be used to regulate B2B interactions. The non-repudiation services provide for the accountability of the actions of participants; including the acknowledgement of actions, their run-time validation with respect to application-level constraints and logging for audit. The framework is realised in the context of interactions with and between components of a J2EE application server platform. However, the design is sufficiently flexible to apply to other common middleware platforms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Consent Receipts For a Usable And Auditable Web of Personal Data

    Get PDF
    Consenting on the Web, in the context of online privacy and data protection, is universally accepted as a difficult problem, mainly because of its cross-disciplinarity. For example, any approach to online Consenting needs to meet usability, legal, regulatory, technical, and business requirements. To date, effort has been predominantly focused on meeting compliance with regulations and automation, and less on the true re-empowerment of users with respect to their personal data. One approach that has not seen sufficient research is the use of ’Consent Receipts’, which offer a new paradigm of recording interactions concerning consent and using them as proofs in future actions, similar to familiar use of a common shopping receipt. In addition to being a record, receipts encourage accountability in how technology handles consent and is beneficial for all involved stakeholders. For organisations, it assists with legal requirements for demonstration of valid consent, while for users it provides transparency and accountability by being a proof to be used against malpractices related to consent. Receipts also have uses in addition to those related to consent, such as for authorising the holder in exercising related rights. This paper analyses the requirements, uses, and benefits offered by Consent Receipts with an extensive and broad literature review. Since receipts are a novel concept, we identify properties and requirements, and then new mechanisms necessary for the Web to support receipts. We then demonstrate feasibility of receipts through proof-of-concepts in three common real-world use-cases: (a) acceptance of a privacy policy and its subsequent changes; (b) choices expressed via consent dialogues or cookie banners; and (c) verbal interactions with Amazon Alexa

    Security and Privacy Preservation in Mobile Advertising

    Get PDF
    Mobile advertising is emerging as a promising advertising strategy, which leverages prescriptive analytics, location-based distribution, and feedback-driven marketing to engage consumers with timely and targeted advertisements. In the current mobile advertising system, a third-party ad broker collects and manages advertisements for merchants who would like to promote their business to mobile users. Based on its large-scale database of user profiles, the ad broker can help the merchants to better reach out to customers with related interests and charges the merchants for ad dissemination services. Recently, mobile advertising technology has dominated the digital advertising industry and has become the main source of income for IT giants. However, there are many security and privacy challenges that may hinder the continuous success of the mobile advertising industry. First, there is a lack of advertising transparency in the current mobile advertising system. For example, mobile users are concerned about the reliability and trustworthiness of the ad dissemination process and advertising review system. Without proper countermeasures, mobile users can install ad-blocking software to filter out irrelevant or even misleading advertisements, which may lower the advertising investments from merchants. Second, as more strict privacy regulations (e.g. European General Data Privacy Regulations) take effect, it is critical to protect mobile users’ personal profiles from illegal sharing and exposure in the mobile advertising system. In this thesis, three security and privacy challenges for the mobile advertising system are identified and addressed with the designs, implementations, and evaluations of a blockchain-based architecture. First, we study the anonymous review system for the mobile advertising industry. When receiving advertisements from a specific merchant (e.g. a nearby restaurant), mobile users are more likely to browse the previous reviews about the merchant for quality-of-service assessments. However, current review systems are known for the lack of system transparency and are subject to many attacks, such as double reviews and deletions of negative reviews. We exploit the tamper-proof nature and the distributed consensus mechanism of the blockchain technology, to design a blockchain-based review system for mobile advertising, where review accumulations are transparent and verifiable to the public. To preserve user review privacy, we further design an anonymous review token generation scheme, where users are encouraged to leave reviews anonymously while still ensuring the review authenticity. We also explore the implementation challenges of the blockchain-based system on an Ethereum testing network and the experimental results demonstrate the application feasibility of the proposed anonymous review system. Second, we investigate the transparency issues for the targeted ad dissemination process. Specifically, we focus on a specific mobile advertising application: vehicular local advertising, where vehicular users send spatial-keyword queries to ad brokers to receive location-aware advertisements. To build a transparent advertising system, the ad brokers are required to provide mobile users with explanations on the ad dissemination process, e.g., why a specific ad is disseminated to a mobile user. However, such transparency explanations are often found incomplete and sometimes even misleading, which may lower the user trust on the advertising system if without proper countermeasures. Therefore, we design an advertising smart contract to efficiently realize a publicly verifiable spatial-keyword query scheme. Instead of directly implementing the spatial-keyword query scheme on the smart contract with prohibitive storage and computation cost, we exploit the on/off-chain computation models to trade the expensive on-chain cost for cheap off-chain cost. With two design strategies: digest-and-verify and divide-then-assemble, the on-chain cost for a single spatial keyword query is reduced to constant regardless of the scale of the spatial-keyword database. Extensive experiments are conducted to provide both on-chain and off-chain benchmarks with a verifiable computation framework. Third, we explore another critical requirement of the mobile advertising system: public accountability enforcement against advertising misconducts, if (1) mobile users receive irrelevant ads, or (2) advertising policies of merchants are not correctly computed in the ad dissemination process. This requires the design of a composite Succinct Non-interactive ARGument (SNARG) system, that can be tailored for different advertising transparency requirements and is efficient for the blockchain implementations. Moreover, pursuing public accountability should also achieve a strict privacy guarantee for the user profile. We also propose an accountability contract which can receive explanation requirements from both mobile users and merchants. To promote prompt on-chain responses, we design an incentive mechanism based on the pre-deposits of involved parties, i.e., ad brokers, mobile users, and merchants. If any advertising misconduct is identified, public accountability can be enforced by confiscating the pre-deposits of the misbehaving party. Comprehensive experiments and analyses are conducted to demonstrate the versatile functionalities and feasibility of the accountability contract. In summary, we have designed, implemented, and evaluated a blockchain-based architecture for security and privacy preservations in the mobile advertising. The designed architecture can not only enhance the transparency and accountability for the mobile advertising system, but has also achieved notably on-chain efficiency and privacy for real-world implementations. The results from the thesis may shed light on the future research and practice of a blockchain-based architecture for the privacy regulation compliance in the mobile advertising

    Secure Information Sharing with Distributed Ledgers

    Get PDF
    In 2009, blockchain technology was first introduced as the supporting database technology for digital currencies. Since then, more advanced derivations of the technology have been developed under the broader term Distributed Ledgers, with improved scalability and support for general-purpose application logic. As a distributed database, they are able to support interorganizational information sharing while assuring desirable information security attributes like non-repudiation, auditability and transparency. Based on these characteristics, researchers and practitioners alike have begun to identify a plethora of disruptive use cases for Distributed Ledgers in existing application domains. While these use cases are promising significant efficiency improvements and cost reductions, practical adoption has been slow in the past years. This dissertation focuses on improving three aspects contributing to slow adoption. First, it attempts to identify application areas and substantiated use cases where Distributed Ledgers can considerably advance the security of information sharing. Second, it considers the security aspects of the technology itself, identifying threats to practical applications and detection approaches for these threats. And third, it investigates success factors for successful interorganizational collaborations using Distributed Ledgers

    A Generic Approach for the Automated Notarization of Cloud Configurations Using Blockchain-Based Trust.

    Get PDF
    Debido a su escalabilidad, las aplicaciones en la nube tienen una importante ventaja de costes para las empresas. En consecuencia, las empresas quieren tanto externalizar sus datos como obtener servicios de la nube. Sin embargo, dado que la mayoría de las empresas tienen políticas internas y requisitos de cumplimiento para operar y utilizar aplicaciones de software, el uso de aplicaciones en la nube crea un nuevo desafío para las empresas. La inclusión de aplicaciones en la nube equivale a la subcontratación de servicios en el sentido de que las empresas deben confiar en que el proveedor de aplicaciones en la nube aplicará los requisitos de cumplimiento interno en las aplicaciones adoptadas. La investigación ha demostrado que la confianza y el riesgo están estrechamente relacionados y son factores clave que influyen en la utilización de aplicaciones en la nube. Esta tesis pretende desarrollar una arquitectura en la nube que aborde este reto, trasladando la confianza en las configuraciones de cumplimiento del proveedor de aplicaciones en la nube a la cadena de bloques. Así, este trabajo pretende reducir el riesgo de adopción de las aplicaciones en la nube debido a los requisitos de cumplimiento. En esta tesis, la investigación de la ciencia del diseño se utiliza para crear la arquitectura para trasladar la confianza mencionada a la cadena de bloques. Un grupo de discusión determinó el alcance del trabajo. La base de conocimientos de este trabajo se construyó utilizando inteligencia artificial y una revisión sistemática de la literatura, y la arquitectura presentada se desarrolló y prototipó utilizando el método de desarrollo rápido de aplicaciones. Se utilizaron entrevistas guiadas semiestructuradas de método mixto para evaluar el enfoque de la arquitectura presentada y valorar las cualidades de reducción del riesgo de adopción. La tesis demostró que la arquitectura de software desarrollada podía trasladar la confianza del proveedor de la nube a la cadena de bloques. La evaluación de la arquitectura de software propuesta demostró además que el riesgo de adopción debido a las configuraciones de la nube basadas en el cumplimiento podía reducirse de "alto" a "bajo" utilizando la tecnología blockchain. Esta tesis presenta una arquitectura que desplaza la confianza para la implementación de configuraciones basadas en el cumplimiento de la normativa desde el proveedor de la nube a la cadena de bloques. Además, muestra que el cambio de confianza puede reducir significativamente el riesgo de adopción de las aplicaciones en la nube.Administración y Dirección de Empresa

    A programming system for process coordination in virtual organisations

    Get PDF
    PhD thesisDistributed business applications are increasingly being constructed by composing them from services provided by various online businesses. Typically, this leads to trading partners coming together to form virtual organizations (VOs). Each member of a VO maintains their autonomy, except with respect to their agreed goals. The structure of the Virtual Organisation may contain one dominant organisation who dictates the method of achieving the goals or the members may be considered peers of equal importance. The goals of VOs can be defined by the shared global business processes they contain. To be able to execute these business processes, VOs require a flexible enactment model as there may be no single ‘owner’ of the business process and therefore no natural place to enact the business processes. One solution is centralised enactment using a trusted third party, but in some cases this may not be acceptable (for instance because of security reasons). This thesis will present a programming system that allows centralised as well as distributed enactment where each organisation enacts part of the business process. To achieve distributed enactment we must address the problem of specifying the business process in a manner that is amenable to distribution. The first contribution of this thesis is the presentation of the Task Model, a set of languages and notations for describing workflows that can be enacted in a centralised or decentralised manner. The business processes that we specify will coordinate the services that each organisation owns. The second contribution of this thesis is the presentation of a method of describing the observable behaviour of these services. The language we present, SSDL, provides a flexible and extensible way of describing the messaging behaviour of Web Services. We present a method for checking that a set of services described in SSDL are compatible with each other and also that a workflow interacts with a service in the desired manner. The final contribution of this thesis is the presentation of an abstract architecture and prototype implementation of a decentralised workflow engine. The prototype is able to enact workflows described in the Task Model notation in either a centralised or decentralised scenario

    Privacy trust access control infrastructure using XACML

    Get PDF
    The use of personal, sensitive information, such as privileges and attributes, to gain access to computer resources in distributed environments raises an interesting paradox. On one hand, in order to make the services and resources accessible to legitimate users, access control infrastructure requires valid and provable service clients' identities or attributes to make decisions. On the other hand, the service clients may not be prepared to disclose their identity information or attributes to a remote party without determining in advance whether the service provider can be trusted with such sensitive information. Moreover, when clients give out personal information, they still are unsure of the extent of propagation and use of the information. This thesis describes an investigation of privacy preserving options in access control infrastructures, and proposes a security model to support the management of those options, based on extensible Access Control Markup Language (XACML) and Security Access Markup Language (SAML), both of which are OASIS security standards. Existing access control systems are typically unilateral in that the enterprise service provider assigns the access rights and makes the access control decisions, and there is no negotiation between the client and the service provider. As access control management systems lean towards being user-centric or federated, unilateral approaches can no longer adequately preserve the client's privacy, particularly where communicating parties have no pre-existing trust relationship. As a result, a unified approach that significantly improves privacy and confidentiality protection in distributed environments was considered. This resulted in the development of XACML Trust Management Authorization Infrastructure (XTMAI) designed to handle privacy and confidentiality mutually and simultaneously using the concept of Obligation of Trust (OoT) protocol. The OoT enables two or more transaction parties to exchange Notice of Obligations (NoB) (obligating constraints) as well as Signed Acceptance of Obligation (SAO), a proof of acceptance, as security assurances before exchange of sensitive resources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Privacy trust access control infrastructure using XACML

    Get PDF
    The use of personal, sensitive information, such as privileges and attributes, to gain access to computer resources in distributed environments raises an interesting paradox. On one hand, in order to make the services and resources accessible to legitimate users, access control infrastructure requires valid and provable service clients' identities or attributes to make decisions. On the other hand, the service clients may not be prepared to disclose their identity information or attributes to a remote party without determining in advance whether the service provider can be trusted with such sensitive information. Moreover, when clients give out personal information, they still are unsure of the extent of propagation and use of the information. This thesis describes an investigation of privacy preserving options in access control infrastructures, and proposes a security model to support the management of those options, based on extensible Access Control Markup Language (XACML) and Security Access Markup Language (SAML), both of which are OASIS security standards. Existing access control systems are typically unilateral in that the enterprise service provider assigns the access rights and makes the access control decisions, and there is no negotiation between the client and the service provider. As access control management systems lean towards being user-centric or federated, unilateral approaches can no longer adequately preserve the client's privacy, particularly where communicating parties have no pre-existing trust relationship. As a result, a unified approach that significantly improves privacy and confidentiality protection in distributed environments was considered. This resulted in the development of XACML Trust Management Authorization Infrastructure (XTMAI) designed to handle privacy and confidentiality mutually and simultaneously using the concept of Obligation of Trust (OoT) protocol. The OoT enables two or more transaction parties to exchange Notice of Obligations (NoB) (obligating constraints) as well as Signed Acceptance of Obligation (SAO), a proof of acceptance, as security assurances before exchange of sensitive resources
    corecore