6,957 research outputs found

    Quantum computer inverting time arrow for macroscopic systems

    Get PDF
    A legend tells that once Loschmidt asked Boltzmann on what happens to his statistical theory if one inverts the velocities of all particles, so that, due to the reversibility of Newton's equations, they return from the equilibrium to a nonequilibrium initial state. Boltzmann only replied ``then go and invert them''. This problem of the relationship between the microscopic and macroscopic descriptions of the physical world and time-reversibility has been hotly debated from the XIXth century up to nowadays. At present, no modern computer is able to perform Boltzmann's demand for a macroscopic number of particles. In addition, dynamical chaos implies exponential growth of any imprecision in the inversion that leads to practical irreversibility. Here we show that a quantum computer composed of a few tens of qubits, and operating even with moderate precision, can perform Boltzmann's demand for a macroscopic number of classical particles. Thus, even in the regime of dynamical chaos, a realistic quantum computer allows to rebuild a specific initial distribution from a macroscopic state given by thermodynamic laws.Comment: revtex, 4 pages, 4 figure

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Thermodynamic cost of reversible computing

    Full text link
    Since reversible computing requires preservation of all information throughout the entire computational process, this implies that all errors that appear as a result of the interaction of the information-carrying system with uncontrolled degrees of freedom must be corrected. But this can only be done at the expense of an increase in the entropy of the environment corresponding to the dissipation, in the form of heat, of the ``noisy'' part of the system's energy. This paper gives an expression of that energy in terms of the effective noise temperature, and analyzes the relationship between the energy dissipation rate and the rate of computation. Finally, a generalized Clausius principle based on the concept of effective temperature is presented.Comment: 5 pages; added two paragraphs and fixed a number of typo
    • …
    corecore