103,984 research outputs found

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    An Adaptive Integration Architecture for Software Reuse

    Get PDF
    The problem of building large, reliable software systems in a controlled, cost-effective way, the so-called software crisis problem, is one of computer science\u27s great challenges. From the very outset of computing as science, software reuse has been touted as a means to overcome the software crisis issue. Over three decades later, the software community is still grappling with the problem of building large reliable software systems in a controlled, cost effective way; the software crisis problem is alive and well. Today, many computer scientists still regard software reuse as a very powerful vehicle to improve the practice of software engineering. The advantage of amortizing software development cost through reuse continues to be a major objective in the art of building software, even though the tools, methods, languages, and overall understanding of software engineering have changed significantly over the years. Our work is primarily focused on the development of an Adaptive Application Integration Architecture Framework. Without good integration tools and techniques, reuse is difficult and will probably not happen to any significant degree. In the development of the adaptive integration architecture framework, the primary enabling concept is object-oriented design supported by the unified modeling language. The concepts of software architecture, design patterns, and abstract data views are used in a structured and disciplined manner to established a generic framework. This framework is applied to solve the Enterprise Application Integration (EM) problem in the telecommunications operations support system (OSS) enterprise marketplace. The proposed adaptive application integration architecture framework facilitates application reusability and flexible business process re-engineering. The architecture addresses the need for modern businesses to continuously redefine themselves to address changing market conditions in an increasingly competitive environment. We have developed a number of Enterprise Application Integration design patterns to enable the implementation of an EAI framework in a definite and repeatable manner. The design patterns allow for integration of commercial off-the-shelf applications into a unified enterprise framework facilitating true application portfolio interoperability. The notion of treating application services as infrastructure services and using business processes to combine them arbitrarily provides a natural way of thinking about adaptable and reusable software systems. We present a mathematical formalism for the specification of design patterns. This specification constitutes an extension of the basic concepts from many-sorted algebra. In particular, the notion of signature is extended to that of a vector, consisting of a set of linearly independent signatures. The approach can be used to reason about various properties including efforts for component reuse and to facilitate complex largescale software development by providing the developer with design alternatives and support for automatic program verification

    Developing reusable.NET software components

    Get PDF
    © 2014 The Science and Information (SAI) Organization. Software Development with reuse and for reuse is the foundation of CBSE (Component based software engineering) which allow faster development at lower cost and better usability. A reusable software component works as a plug and play device, which abstract the software complexity and increase performance. Software reuse guidelines have been addressing the issue of capturing best practices, for a long while software industry has collected the enormous wealth of knowledge, experience, domain expertise, design principals & heuristics, hypothesis, algorithms, and experimental results. However, there is no rock solid and mature software component development guidelines defined for the current technologies such as.NET. This paper presents reuse guidelines based framework (known as.NET Reuse Guider) for guidelines based component development for reuse in.NET family. We have demonstrated our approach by designing a binary component as part of development for reuse based on our own.NET Reuse Guider framework. This paper also provides a number reuse analysis and metrics and a prototype component guider tool which sits on top of the.NET architecture with built-in software development & reuse knowledge

    Domain specific software design for decision aiding

    Get PDF
    McDonnell Aircraft Company (MCAIR) is involved in many large multi-discipline design and development efforts of tactical aircraft. These involve a number of design disciplines that must be coordinated to produce an integrated design and a successful product. Our interpretation of a domain specific software design (DSSD) is that of a representation or framework that is specialized to support a limited problem domain. A DSSD is an abstract software design that is shaped by the problem characteristics. This parallels the theme of object-oriented analysis and design of letting the problem model directly drive the design. The DSSD concept extends the notion of software reusability to include representations or frameworks. It supports the entire software life cycle and specifically leads to improved prototyping capability, supports system integration, and promotes reuse of software designs and supporting frameworks. The example presented in this paper is the task network architecture or design which was developed for the MCAIR Pilot's Associate program. The task network concept supported both module development and system integration within the domain of operator decision aiding. It is presented as an instance where a software design exhibited many of the attributes associated with DSSD concept

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Formal methods for reuse of design patterns and micro-architectures

    Get PDF
    Software reuse is recognized to have the potential for improved productivity of quality software. Class reuse, micro-architecture reuse, and reuse of application frameworks are the three distinct levels of software reuse. This thesis examines the critical issues in providing support for different levels of reuse through formal specifications of reusable components. The formal specification language Larch/C++ has been used in reuse research projects and has been found to be adequate for specifying the behavior of class interfaces. We strengthen this claim by applying this methodology to several classes chosen from Rogue Wave library. We then provide extensions to the language for specifying object collaborations in a micro-architecture. We then illustrate this specification methodology for a micro-architecture chosen from a design pattern repository. In this context, we have also discussed the need to formally document design patterns and provided a formal framework within which design patterns can be formalized. Finally, we present the conceptual schema for a design pattern repository and discuss the query language features for storage and retrieval of design patterns
    corecore