5,245 research outputs found

    The restricted isometry property for random block diagonal matrices

    Get PDF
    In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparse vectors is possible from noisy, undersampled measurements via computationally tractable algorithms. It is by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIP under certain conditions on the number of measurements. Their use can be limited in practice, however, due to storage limitations, computational considerations, or the mismatch of such matrices with certain measurement architectures. These issues have recently motivated considerable effort towards studying the RIP for structured random matrices. In this paper, we study the RIP for block diagonal measurement matrices where each block on the main diagonal is itself a sub-Gaussian random matrix. Our main result states that such matrices can indeed satisfy the RIP but that the requisite number of measurements depends on certain properties of the basis in which the signals are sparse. In the best case, these matrices perform nearly as well as dense Gaussian random matrices, despite having many fewer nonzero entries

    Modulated Unit-Norm Tight Frames for Compressed Sensing

    Full text link
    In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements m=O(slog2slog2n)m = O(s \log^2s \log^2n) for ss-sparse signals of length nn and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. More importantly, we propose several structured sensing models by appealing to this unified framework, such as a general sensing model with arbitrary/determinisic subsamplers, a fast and efficient block compressed sensing scheme, and structured sensing matrices with deterministic phase modulations, all of which can lead to improvements on practical applications. In particular, one of the constructions is applied to simplify the transceiver design of CS-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems.Comment: submitted to IEEE Transactions on Signal Processin

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page

    Uniform Recovery from Subgaussian Multi-Sensor Measurements

    Full text link
    Parallel acquisition systems are employed successfully in a variety of different sensing applications when a single sensor cannot provide enough measurements for a high-quality reconstruction. In this paper, we consider compressed sensing (CS) for parallel acquisition systems when the individual sensors use subgaussian random sampling. Our main results are a series of uniform recovery guarantees which relate the number of measurements required to the basis in which the solution is sparse and certain characteristics of the multi-sensor system, known as sensor profile matrices. In particular, we derive sufficient conditions for optimal recovery, in the sense that the number of measurements required per sensor decreases linearly with the total number of sensors, and demonstrate explicit examples of multi-sensor systems for which this holds. We establish these results by proving the so-called Asymmetric Restricted Isometry Property (ARIP) for the sensing system and use this to derive both nonuniversal and universal recovery guarantees. Compared to existing work, our results not only lead to better stability and robustness estimates but also provide simpler and sharper constants in the measurement conditions. Finally, we show how the problem of CS with block-diagonal sensing matrices can be viewed as a particular case of our multi-sensor framework. Specializing our results to this setting leads to a recovery guarantee that is at least as good as existing results.Comment: 37 pages, 5 figure
    corecore