31,423 research outputs found

    LIKELIHOOD BASED POPULATION INDEPENDENT COMPONENT ANALYSIS

    Get PDF
    Independent component analysis (ICA) is a widely used technique for blind source separation, used heavily in several scientific research areas including acoustics, electrophysiology and functional neuroimaging. We propose a scalable two-stage iterative true group ICA methodology for analyzing population level fMRI data where the number of subjects is very large. The method is based on likelihood estimators of the underlying source densities and the mixing matrix. As opposed to many commonly used group ICA algorithms the proposed method does not require significant data reduction by a twofold singular value decomposition. In addition, the method can be applied to a large group of subjects since the memory requirements are not restrictive. The performance of our approach is compared with commonly used group ICA algorithms is shown by using simulation studies. Furthermore, the proposed method is applied to a large collection of resting state fMRI datasets. The results show that the postulated brain networks are recovered by the proposed algorithm

    LOCUS: A Novel Decomposition Method for Brain Network Connectivity Matrices using Low-rank Structure with Uniform Sparsity

    Full text link
    Network-oriented research has been increasingly popular in many scientific areas. In neuroscience research, imaging-based network connectivity measures have become the key for understanding brain organizations, potentially serving as individual neural fingerprints. There are major challenges in analyzing connectivity matrices including the high dimensionality of brain networks, unknown latent sources underlying the observed connectivity, and the large number of brain connections leading to spurious findings. In this paper, we propose a novel blind source separation method with low-rank structure and uniform sparsity (LOCUS) as a fully data-driven decomposition method for network measures. Compared with the existing method that vectorizes connectivity matrices ignoring brain network topology, LOCUS achieves more efficient and accurate source separation for connectivity matrices using low-rank structure. We propose a novel angle-based uniform sparsity regularization that demonstrates better performance than the existing sparsity controls for low-rank tensor methods. We propose a highly efficient iterative Node-Rotation algorithm that exploits the block multi-convexity of the objective function to solve the non-convex optimization problem for learning LOCUS. We illustrate the advantage of LOCUS through extensive simulation studies. Application of LOCUS to Philadelphia Neurodevelopmental Cohort neuroimaging study reveals biologically insightful connectivity traits which are not found using the existing method

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms

    Blind separation of underdetermined mixtures with additive white and pink noises

    Get PDF
    This paper presents an approach for underdetermined blind source separation in the case of additive Gaussian white noise and pink noise. Likewise, the proposed approach is applicable in the case of separating I + 3 sources from I mixtures with additive two kinds of noises. This situation is more challenging and suitable to practical real world problems. Moreover, unlike to some conventional approaches, the sparsity conditions are not imposed. Firstly, the mixing matrix is estimated based on an algorithm that combines short time Fourier transform and rough-fuzzy clustering. Then, the mixed signals are normalized and the source signals are recovered using modified Gradient descent Local Hierarchical Alternating Least Squares Algorithm exploiting the mixing matrix obtained from the previous step as an input and initialized by multiplicative algorithm for matrix factorization based on alpha divergence. The experiments and simulation results show that the proposed approach can separate I + 3 source signals from I mixed signals, and it has superior evaluation performance compared to some conventional approaches

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    An Efficient Algorithm by Kurtosis Maximization in Reference-Based Framework

    Get PDF
    This paper deals with the optimization of kurtosis for complex-valued signals in the independent component analysis (ICA) framework, where source signals are linearly and instantaneously mixed. Inspired by the recently proposed reference-based contrast schemes, a similar contrast function is put forward, based on which a new fast fixed-point (FastICA) algorithm is proposed. The new optimization method is similar in spirit to the former classical kurtosis-based FastICA algorithm but differs in the fact that it is much more efficient than the latter in terms of computational speed, which is significantly striking with large number of samples. The performance of this new algorithm is confirmed through computer simulations
    • …
    corecore