178,335 research outputs found

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Advancements in multi-view processing for reconstruction, registration and visualization.

    Get PDF
    The ever-increasing diffusion of digital cameras and the advancements in computer vision, image processing and storage capabilities have lead, in the latest years, to the wide diffusion of digital image collections. A set of digital images is usually referred as a multi-view images set when the pictures cover different views of the same physical object or location. In multi-view datasets, correlations between images are exploited in many different ways to increase our capability to gather enhanced understanding and information on a scene. For example, a collection can be enhanced leveraging on the camera position and orientation, or with information about the 3D structure of the scene. The range of applications of multi-view data is really wide, encompassing diverse fields such as image-based reconstruction, image-based localization, navigation of virtual environments, collective photographic retouching, computational photography, object recognition, etc. For all these reasons, the development of new algorithms to effectively create, process, and visualize this type of data is an active research trend. The thesis will present four different advancements related to different aspects of the multi-view data processing: - Image-based 3D reconstruction: we present a pre-processing algorithm, that is a special color-to-gray conversion. This was developed with the aim to improve the accuracy of image-based reconstruction algorithms. In particular, we show how different dense stereo matching results can be enhanced by application of a domain separation approach that pre-computes a single optimized numerical value for each image location. - Image-based appearance reconstruction: we present a multi-view processing algorithm, this can enhance the quality of the color transfer from multi-view images to a geo-referenced 3D model of a location of interest. The proposed approach computes virtual shadows and allows to automatically segment shadowed regions from the input images preventing to use those pixels in subsequent texture synthesis. - 2D to 3D registration: we present an unsupervised localization and registration system. This system can recognize a site that has been framed in a multi-view data and calibrate it on a pre-existing 3D representation. The system has a very high accuracy and it can validate the result in a completely unsupervised manner. The system accuracy is enough to seamlessly view input images correctly super-imposed on the 3D location of interest. - Visualization: we present PhotoCloud, a real-time client-server system for interactive exploration of high resolution 3D models and up to several thousand photographs aligned over this 3D data. PhotoCloud supports any 3D models that can be rendered in a depth-coherent way and arbitrary multi-view image collections. Moreover, it tolerates 2D-to-2D and 2D-to-3D misalignments, and it provides scalable visualization of generic integrated 2D and 3D datasets by exploiting data duality. A set of effective 3D navigation controls, tightly integrated with innovative thumbnail bars, enhances the user navigation. These advancements have been developed in tourism and cultural heritage application contexts, but they are not limited to these

    HNSF Log-Demons: Diffeomorphic demons registration using hierarchical neighbourhood spectral features

    Get PDF
    © 2021 The Authors. Many biomedical applications require accurate non-rigid image registration that can cope with complex deformations. However, popular diffeomorphic Demons registration algorithms suffer from difficulties for complex and serious distortions since they only use image greyscale and gradient information. To address these difficulties, a new diffeomorphic Demons registration algorithm is proposed using hierarchical neighbourhood spectral features namely HNSF Log-Demons in this paper. In view of three important properties of hierarchical neighbourhood spectral features based on line graph such as rotation invariance, invariance of linear changes of brightness, and robustness to noise, the hierarchical neighbourhood spectral features of a reference image and a moving image is first extracted and these novel spectral features are incorporated into the energy function of the diffeomorphic registration framework to improve the capability of capturing complex distortions. Secondly, the Nystr ö o ̈ m approximation based on random singular value decomposition is employed to effectively enhance the computational efficiency of HNSF Log-Demons. Finally, the hybrid multi-resolution strategy based on wavelet decomposition in the registration process is utilised to further improve the registration accuracy and efficiency. Experimental results show that the proposed HNSF Log-Demons not only effectively ensures the generation of smooth and reversible deformation field, but also achieves better performance than state-of-the-art algorithms.National Natural Science Foundation of China. Grant Numbers: 61762058, 61861024, 61871259; Natural Science Foundation of Gansu Province of China. Grant Number: 20JR5RA404; Natural Science Basic Research Program of Shaanxi. Grant Number: 2021JC-47

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM
    corecore