12,358 research outputs found

    Communicating over Filter-and-Forward Relay Networks with Channel Output Feedback

    Full text link
    Relay networks aid in increasing the rate of communication from source to destination. However, the capacity of even a three-terminal relay channel is an open problem. In this work, we propose a new lower bound for the capacity of the three-terminal relay channel with destination-to-source feedback in the presence of correlated noise. Our lower bound improves on the existing bounds in the literature. We then extend our lower bound to general relay network configurations using an arbitrary number of filter-and-forward relay nodes. Such network configurations are common in many multi-hop communication systems where the intermediate nodes can only perform minimal processing due to limited computational power. Simulation results show that significant improvements in the achievable rate can be obtained through our approach. We next derive a coding strategy (optimized using post processed signal-to-noise ratio as a criterion) for the three-terminal relay channel with noisy channel output feedback for two transmissions. This coding scheme can be used in conjunction with open-loop codes for applications like automatic repeat request (ARQ) or hybrid-ARQ.Comment: 15 pages, 8 figures, to appear in IEEE Transactions on Signal Processin

    A Practical Scheme for Wireless Network Operation

    Get PDF
    In many problems in wireline networks, it is known that achieving capacity on each link or subnetwork is optimal for the entire network operation. In this paper, we present examples of wireless networks in which decoding and achieving capacity on certain links or subnetworks gives us lower rates than other simple schemes, like forwarding. This implies that the separation of channel and network coding that holds for many classes of wireline networks does not, in general, hold for wireless networks. Next, we consider Gaussian and erasure wireless networks where nodes are permitted only two possible operations: nodes can either decode what they receive (and then re-encode and transmit the message) or simply forward it. We present a simple greedy algorithm that returns the optimal scheme from the exponential-sized set of possible schemes. This algorithm will go over each node at most once to determine its operation, and hence, is very efficient. We also present a decentralized algorithm whose performance can approach the optimum arbitrarily closely in an iterative fashion
    • …
    corecore