83,012 research outputs found

    From truth to computability I

    Get PDF
    The recently initiated approach called computability logic is a formal theory of interactive computation. See a comprehensive online source on the subject at http://www.cis.upenn.edu/~giorgi/cl.html . The present paper contains a soundness and completeness proof for the deductive system CL3 which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. Among the potential application areas for this result are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems for resource-bound planning and action. This paper is self-contained as it reintroduces all relevant definitions as well as main motivations.Comment: To appear in Theoretical Computer Scienc

    Lindstrom theorems for fragments of first-order logic

    Get PDF
    Lindstr\"om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L\"owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr\"om theorems for these languages can be challenging, as most known techniques rely on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstr\"om theorems for several fragments of first-order logic, including the k-variable fragments for k>2, Tarski's relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstr\"om proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preservation theorems.Comment: Appears in Logical Methods in Computer Science (LMCS

    Semantically-guided goal-sensitive reasoning: decision procedures and the Koala prover

    Get PDF
    The main topic of this article are SGGS decision procedures for fragments of first-order logic without equality. SGGS (Semantically-Guided Goal-Sensitive reasoning) is an attractive basis for decision procedures, because it generalizes to first-order logic the Conflict-Driven Clause Learning (CDCL) procedure for propositional satisfiability. As SGGS is both refutationally complete and model-complete in the limit, SGGS decision procedures are model-constructing. We investigate the termination of SGGS with both positive and negative results: for example, SGGS decides Datalog and the stratified fragment (including Effectively PRopositional logic) that are relevant to many applications. Then we discover several new decidable fragments, by showing that SGGS decides them. These fragments have the small model property, as the cardinality of their SGGS-generated models can be upper bounded, and for most of them termination tools can be applied to test a set of clauses for membership. We also present the first implementation of SGGS - the Koala theorem prover - and we report on experiments with Koala

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    Querying the Unary Negation Fragment with Regular Path Expressions

    Get PDF
    The unary negation fragment of first-order logic (UNFO) has recently been proposed as a generalization of modal logic that shares many of its good computational and model-theoretic properties. It is attractive from the perspective of database theory because it can express conjunctive queries (CQs) and ontologies formulated in many description logics (DLs). Both are relevant for ontology-mediated querying and, in fact, CQ evaluation under UNFO ontologies (and thus also under DL ontologies) can be `expressed\u27 in UNFO as a satisfiability problem. In this paper, we consider the natural extension of UNFO with regular expressions on binary relations. The resulting logic UNFOreg can express (unions of) conjunctive two-way regular path queries (C2RPQs) and ontologies formulated in DLs that include transitive roles and regular expressions on roles. Our main results are that evaluating C2RPQs under UNFOreg ontologies is decidable, 2ExpTime-complete in combined complexity, and coNP-complete in data complexity, and that satisfiability in UNFOreg is 2ExpTime-complete, thus not harder than in UNFO

    Relevant Logics Obeying Component Homogeneity

    Get PDF
    This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete sequent calculi for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues

    Logical Reduction of Metarules

    Get PDF
    International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times

    On existential declarations of independence in IF Logic

    Full text link
    We analyze the behaviour of declarations of independence between existential quantifiers in quantifier prefixes of IF sentences; we give a syntactical criterion for deciding whether a sentence beginning with such prefix exists such that its truth values may be affected by removal of the declaration of independence. We extend the result also to equilibrium semantics values for undetermined IF sentences. The main theorem allows us to describe the behaviour of various particular classes of quantifier prefixes, and to prove as a remarkable corollary that all existential IF sentences are equivalent to first-order sentences. As a further consequence, we prove that the fragment of IF sentences with knowledge memory has only first-order expressive power (up to truth equivalence)
    • …
    corecore