331 research outputs found

    DICOM-RT standart in Radiotherapy information systems - A National Study

    Get PDF
    Mestrado em Informática MédicaMaster Programme in Medical Informatic

    Optimizing breast cancer care in the Netherlands using clinical audit data

    Get PDF

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Artificial intelligence applications in radiotherapy:The role of the FAIR data principles

    Get PDF

    The Empirical Foundations of Teleradiology and Related Applications: A Review of the Evidence

    Full text link
    Introduction: Radiology was founded on a technological discovery by Wilhelm Roentgen in 1895. Teleradiology also had its roots in technology dating back to 1947 with the successful transmission of radiographic images through telephone lines. Diagnostic radiology has become the eye of medicine in terms of diagnosing and treating injury and disease. This article documents the empirical foundations of teleradiology. Methods: A selective review of the credible literature during the past decade (2005?2015) was conducted, using robust research design and adequate sample size as criteria for inclusion. Findings: The evidence regarding feasibility of teleradiology and related information technology applications has been well documented for several decades. The majority of studies focused on intermediate outcomes, as indicated by comparability between teleradiology and conventional radiology. A consistent trend of concordance between the two modalities was observed in terms of diagnostic accuracy and reliability. Additional benefits include reductions in patient transfer, rehospitalization, and length of stay.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140295/1/tmj.2016.0149.pd

    Quantitative imaging in radiation oncology

    Get PDF
    Artificially intelligent eyes, built on machine and deep learning technologies, can empower our capability of analysing patients’ images. By revealing information invisible at our eyes, we can build decision aids that help our clinicians to provide more effective treatment, while reducing side effects. The power of these decision aids is to be based on patient tumour biologically unique properties, referred to as biomarkers. To fully translate this technology into the clinic we need to overcome barriers related to the reliability of image-derived biomarkers, trustiness in AI algorithms and privacy-related issues that hamper the validation of the biomarkers. This thesis developed methodologies to solve the presented issues, defining a road map for the responsible usage of quantitative imaging into the clinic as decision support system for better patient care

    A case-based reasoning system for radiotherapy treatment planning for brain cancer

    Get PDF
    In this thesis, a novel case-based reasoning (CBR) approach to radiotherapy treatment planning for brain cancer patients is presented. In radiotherapy, tumour cells are destroyed using ionizing radiation. For each patient, a treatment plan is generated that describes how the radiation should be applied in order to deliver a tumouricidal radiation dose while avoiding irradiation of healthy tissue and organs at risk in the vicinity of the tumour. The traditional, manual trial and error approach is a time-consuming process that depends on the experience and intuitive knowledge of medical physicists. CBR is an artificial intelligence methodology, which attempts to solve new problems based on the solutions of previously solved similar problems. In this research work, CBR is used to generate the parameters of a treatment plan by capturing the subjective and intuitive knowledge of expert medical physicists stored intrinsically in the treatment plans of similar patients treated in the past. This work focusses on the retrieval stage of the CBR system, in which given a new patient case, the most similar case in the archived case base is retrieved along with its treatment plan. A number of research issues that arise from using CBR for radiotherapy treatment planning for brain cancer are addressed. Different approaches to similarity calculation between cases are investigated and compared, in particular, the weighted nearest neighbour similarity measure and a novel non-linear, fuzzy similarity measure designed for our CBR system. A local case attribute weighting scheme has been developed that uses rules to assign attribute weights based on the values of the attributes in the new case and is compared to global attribute weighting, where the attribute weights remain constant for all target cases. A multi-phase case retrieval approach is introduced in which each phase considers one part of the solution. In addition, a framework developed for the imputation of missing values in the case base is described. The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. The performance of the developed methodologies was tested using brain cancer patient cases obtained from the City Hospital. The results obtained show that the success rate of the retrieval mechanism provides a good starting point for adaptation, the next phase in development for the CBR system. The developed automated CBR system will assist medical physicists in quickly generating treatment plans and can also serve as a teaching and training aid for junior, inexperienced medical physicists. In addition, the developed methods are generic in nature and can be adapted to be used in other CBR or intelligent decision support systems for other complex, real world, problem domains that highly depend on subjective and intuitive knowledge

    Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline for Oropharyngeal Cancer Radiotherapy Treatment Guidance

    Get PDF
    Oropharyngeal cancer (OPC) is a widespread disease and one of the few domestic cancers that is rising in incidence. Radiographic images are crucial for assessment of OPC and aid in radiotherapy (RT) treatment. However, RT planning with conventional imaging approaches requires operator-dependent tumor segmentation, which is the primary source of treatment error. Further, OPC expresses differential tumor/node mid-RT response (rapid response) rates, resulting in significant differences between planned and delivered RT dose. Finally, clinical outcomes for OPC patients can also be variable, which warrants the investigation of prognostic models. Multiparametric MRI (mpMRI) techniques that incorporate simultaneous anatomical and functional information coupled to artificial intelligence (AI) approaches could improve clinical decision support for OPC by providing immediately actionable clinical rationale for adaptive RT planning. If tumors could be reproducibly segmented, rapid response could be classified, and prognosis could be reliably determined, overall patient outcomes would be optimized to improve the therapeutic index as a function of more risk-adapted RT volumes. Consequently, there is an unmet need for automated and reproducible imaging which can simultaneously segment tumors and provide predictive value for actionable RT adaptation. This dissertation primarily seeks to explore and optimize image processing, tumor segmentation, and patient outcomes in OPC through a combination of advanced imaging techniques and AI algorithms. In the first specific aim of this dissertation, we develop and evaluate mpMRI pre-processing techniques for use in downstream segmentation, response prediction, and outcome prediction pipelines. Various MRI intensity standardization and registration approaches were systematically compared and benchmarked. Moreover, synthetic image algorithms were developed to decrease MRI scan time in an effort to optimize our AI pipelines. We demonstrated that proper intensity standardization and image registration can improve mpMRI quality for use in AI algorithms, and developed a novel method to decrease mpMRI acquisition time. Subsequently, in the second specific aim of this dissertation, we investigated underlying questions regarding the implementation of RT-related auto-segmentation. Firstly, we quantified interobserver variability for an unprecedented large number of observers for various radiotherapy structures in several disease sites (with a particular emphasis on OPC) using a novel crowdsourcing platform. We then trained an AI algorithm on a series of extant matched mpMRI datasets to segment OPC primary tumors. Moreover, we validated and compared our best model\u27s performance to clinical expert observers. We demonstrated that AI-based mpMRI OPC tumor auto-segmentation offers decreased variability and comparable accuracy to clinical experts, and certain mpMRI input channel combinations could further improve performance. Finally, in the third specific aim of this dissertation, we predicted OPC primary tumor mid-therapy (rapid) treatment response and prognostic outcomes. Using co-registered pre-therapy and mid-therapy primary tumor manual segmentations of OPC patients, we generated and characterized treatment sensitive and treatment resistant pre-RT sub-volumes. These sub-volumes were used to train an AI algorithm to predict individual voxel-wise treatment resistance. Additionally, we developed an AI algorithm to predict OPC patient progression free survival using pre-therapy imaging from an international data science competition (ranking 1st place), and then translated these approaches to mpMRI data. We demonstrated AI models could be used to predict rapid response and prognostic outcomes using pre-therapy imaging, which could help guide treatment adaptation, though further work is needed. In summary, the completion of these aims facilitates the development of an image-guided fully automated OPC clinical decision support tool. The resultant deliverables from this project will positively impact patients by enabling optimized therapeutic interventions in OPC. Future work should consider investigating additional imaging timepoints, imaging modalities, uncertainty quantification, perceptual and ethical considerations, and prospective studies for eventual clinical implementation. A dynamic version of this dissertation is publicly available and assigned a digital object identifier through Figshare (doi: 10.6084/m9.figshare.22141871)

    A case-based reasoning system for radiotherapy treatment planning for brain cancer

    Get PDF
    In this thesis, a novel case-based reasoning (CBR) approach to radiotherapy treatment planning for brain cancer patients is presented. In radiotherapy, tumour cells are destroyed using ionizing radiation. For each patient, a treatment plan is generated that describes how the radiation should be applied in order to deliver a tumouricidal radiation dose while avoiding irradiation of healthy tissue and organs at risk in the vicinity of the tumour. The traditional, manual trial and error approach is a time-consuming process that depends on the experience and intuitive knowledge of medical physicists. CBR is an artificial intelligence methodology, which attempts to solve new problems based on the solutions of previously solved similar problems. In this research work, CBR is used to generate the parameters of a treatment plan by capturing the subjective and intuitive knowledge of expert medical physicists stored intrinsically in the treatment plans of similar patients treated in the past. This work focusses on the retrieval stage of the CBR system, in which given a new patient case, the most similar case in the archived case base is retrieved along with its treatment plan. A number of research issues that arise from using CBR for radiotherapy treatment planning for brain cancer are addressed. Different approaches to similarity calculation between cases are investigated and compared, in particular, the weighted nearest neighbour similarity measure and a novel non-linear, fuzzy similarity measure designed for our CBR system. A local case attribute weighting scheme has been developed that uses rules to assign attribute weights based on the values of the attributes in the new case and is compared to global attribute weighting, where the attribute weights remain constant for all target cases. A multi-phase case retrieval approach is introduced in which each phase considers one part of the solution. In addition, a framework developed for the imputation of missing values in the case base is described. The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. The performance of the developed methodologies was tested using brain cancer patient cases obtained from the City Hospital. The results obtained show that the success rate of the retrieval mechanism provides a good starting point for adaptation, the next phase in development for the CBR system. The developed automated CBR system will assist medical physicists in quickly generating treatment plans and can also serve as a teaching and training aid for junior, inexperienced medical physicists. In addition, the developed methods are generic in nature and can be adapted to be used in other CBR or intelligent decision support systems for other complex, real world, problem domains that highly depend on subjective and intuitive knowledge

    DATA SCIENCE METHODS FOR STANDARDIZATION, SAFETY, AND QUALITY ASSURANCE IN RADIATION ONCOLOGY

    Get PDF
    Radiation oncology is the field of medicine that deals with treating cancer patients through ionizing radiation. The clinical modality or technique used to treat the cancer patients in the radiation oncology domain is referred to as radiation therapy. Radiation therapy aims to deliver precisely measured dose irradiation to a defined tumor volume (target) with as minimal damage as possible to surrounding healthy tissue (organs-at-risk), resulting in eradication of the tumor, high quality of life, and prolongation of survival. A typical radiotherapy process requires the use of different clinical systems at various stages of the workflow. The data generated in these different stages of workflow is stored in an unstructured and non-standard format, which hinders interoperability and interconnectivity of data, thereby making it difficult to translate all of these datasets into knowledge that supports decision-making in routine clinical practice. In this dissertation, we present an enterprise-level informatics platform that can automatically extract and efficiently store clinical, treatment, imaging, and genomics data from radiation oncology patients. Additionally, we propose data science methods for data standardization, safety, and treatment quality analysis in radiation oncology. We demonstrate that our data standardization methods using word embeddings and machine learning are robust and highly generalizable on real-word clinical datasets collected from the nationwide radiation therapy centers administered by the US Veterans\u27 Health Administration. We also present different heterogeneous data integration approaches to enhance the data standardization process. For patient safety, we analyze the radiation oncology incident reports and propose an integrated natural language processing and machine learning based pipeline to automate the incident triage and prioritization process. We demonstrate that a deep learning based transfer learning approach helps in the automated incident triage process. Finally, we address the issue of treatment quality in terms of automated treatment planning in clinical decision support systems. We show that supervised machine learning methods can efficiently generate clinical hypotheses from radiation oncology treatment plans and demonstrate our framework\u27s data analytics capability
    • …
    corecore