5,070 research outputs found

    A review of Australasian investigations into problem solving and the novice programmer

    Get PDF
    This Australasian focused review compares a number of recent studies that have identified difficulties encountered by novices while learning programming and problem solving. These studies have shown that novices are not performing at expected levels and many novices have only a fragile knowledge of programming, which may prevent them from learning and applying problem solving strategies. The review goes on to explore proposals for explicitly incorporating problem solving strategy instruction into introductory programming curricula and assessment, in an attempt to produce improved learning outcomes for novices. Finally, directions suggested by the reviewed studies are gathered and some unanswered questions are raised

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Emergent requirements for supporting introductory programming

    Get PDF
    The problems associated with learning and teaching first year University Computer Science (CS1) programming classes are summarized showing that various support tools and techniques have been developed and evaluated. From this review of applicable support the paper derives ten requirements that a support tool should have in order to improve CS1 student success rate with respect to learning and understanding

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    The abstraction transition taxonomy: developing desired learning outcomes through the lens of situated cognition

    Get PDF
    We report on a post-hoc analysis of introductory programming lecture materials. The purpose of this analysis is to identify what knowledge and skills we are asking students to acquire, as situated in the activity, tools, and culture of what programmers do and how they think. The specific materials analyzed are the 133 Peer Instruction questions used in lecture to support cognitive apprenticeship -- honoring the situated nature of knowledge. We propose an Abstraction Transition Taxonomy for classifying the kinds of knowing and practices we engage students in as we seek to apprentice them into the programming world. We find students are asked to answer questions expressed using three levels of abstraction: English, CS Speak, and Code. Moreover, many questions involve asking students to transition between levels of abstraction within the context of a computational problem. Finally, by applying our taxonomy in classifying a range of introductory programming exams, we find that summative assessments (including our own) tend to emphasize a small range of the skills fostered in students during the formative/apprenticeship phase

    NOVICE PROGRAMMING STRATEGIES

    Get PDF
    This paper identifies novice programmer activities and their implications for the programming outcome. We investigate strategies, cognitive processes and behavior within interacting phases of programming: 1) understanding and design, 2) coding, and 3) debugging and testing. We envision that stronger novice programmers behave differently from weaker novice programmers during the programming process. We develop a questionnaire-based tool, the programming strategy questionnaire (PSQ), which we use to identify the activities novices employ during their development of a program, and we link the strategies to learning outcomes. Finally, we discuss how educators can use our findings to improve the education of novice programmers

    A study of novice programmer performance and programming pedagogy.

    Get PDF
    Identifying and mitigating the difficulties experienced by novice programmers is an active area of research that has embraced a number of research areas. The aim of this research was to perform a holistic study into the causes of poor performance in novice programmers and to develop teaching approaches to mitigate them. A grounded action methodology was adopted to enable the primary concepts of programming cognitive psychology and their relationships to be established, in a systematic and formal manner. To further investigate novice programmer behaviour, two sub-studies were conducted into programming performance and ability. The first sub-study was a novel application of the FP-Tree algorithm to determine if novice programmers demonstrated predictable patterns of behaviour. This was the first study to data mine programming behavioural characteristics rather than the learner’s background information such as age and gender. Using the algorithm, patterns of behaviour were generated and associated with the students’ ability. No patterns of behaviour were identified and it was not possible to predict student results using this method. This suggests that novice programmers demonstrate no set patterns of programming behaviour that can be used determine their ability, although problem solving was found to be an important characteristic. Therefore, there was no evidence that performance could be improved by adopting pedagogies to promote simple changes in programming behaviour beyond the provision of specific problem solving instruction. A second sub-study was conducted using Raven’s Matrices which determined that cognitive psychology, specifically working memory, played an important role in novice programmer ability. The implication was that programming pedagogies must take into consideration the cognitive psychology of programming and the cognitive load imposed on learners. Abstracted Construct Instruction was developed based on these findings and forms a new pedagogy for teaching programming that promotes the recall of abstract patterns while reducing the cognitive demands associated with developing code. Cognitive load is determined by the student’s ability to ignore irrelevant surface features of the written problem and to cross-reference between the problem domain and their mental program model. The former is dealt with by producing tersely written exercises to eliminate distractors, while for the latter the teaching of problem solving should be delayed until the student’s program model is formed. While this does delay the development of problem solving skills, the problem solving abilities of students taught using this pedagogy were found to be comparable with students taught using a more traditional approach. Furthermore, monitoring students’ understanding of these patterns enabled micromanagement of the learning process, and hence explanations were provided for novice behaviour such as difficulties using arrays, inert knowledge and “code thrashing”. For teaching more complex problem solving, scaffolding of practice was investigated through a program framework that could be developed in stages by the students. However, personalising the level of scaffolding required was complicated and found to be difficult to achieve in practice. In both cases, these new teaching approaches evolved as part of a grounded theory study and a clear progression of teaching practice was demonstrated with appropriate evaluation at each stage in accordance with action researc

    Knowledge restructing and the development of expertise in computer programming

    Get PDF
    This thesis reports a number of empirical studies exploring the development of expertise in computer programming. Experiments 1 and 2 are concerned with the way in which the possession of design experience can influence the perception and use of cues to various program structures. Experiment 3 examines how violations to standard conventions for constructing programs can affect the comprehension of expert, intermediate and novice subjects. Experiment 4 looks at the differences in strategy that are exhibited by subjects of varying skill level when constructing programs in different languages. Experiment 5 takes these ideas further to examine the temporal distribution of different forms of strategy during a program generation task. Experiment 6 provides evidence for salient cognitive structures derived from reaction time and error data in the context of a recognition task. Experiments 7 and 8 are concerned with the role of working memory in program generation and suggest that one aspect of expertise in the programming domain involves the acquisition of strategies for utilising display-based information. The final chapter attempts to bring these experimental findings together in terms of a model of knowledge organisation that stresses the importance of knowledge restructuring processes in the development of expertise. This is contrasted with existing models which have tended to place emphasis upon schemata acquisition and generalisation as the fundamental modes of learning associated with skill development. The work reported here suggests that a fine-grained restructuring of individual schemata takes places during the later stages of skill development. It is argued that those mechanisms currently thought to be associated with the development of expertise may not fully account for the strategic changes and the types of error typically found in the transition between novice, intermediate and expert problem solvers. This work has a number of implications for existing theories of skill acquisition. In particular, it questions the ability of such theories to account for subtle changes in the various manifestations of skilled performance that are associated with increasing expertise. Secondly, the work reported in this thesis attempts to show how specific forms of training might give rise to the knowledge restructuring process that is proposed. Finally, the thesis stresses the important role of display-based problem solving in complex tasks such as programming and highlights the role of programming language notation as a mediating factor in the development and acquisition of problem solving strategies
    corecore