2,960 research outputs found

    Uniformity, Universality, and Computability Theory

    Full text link
    We prove a number of results motivated by global questions of uniformity in computability theory, and universality of countable Borel equivalence relations. Our main technical tool is a game for constructing functions on free products of countable groups. We begin by investigating the notion of uniform universality, first proposed by Montalb\'an, Reimann and Slaman. This notion is a strengthened form of a countable Borel equivalence relation being universal, which we conjecture is equivalent to the usual notion. With this additional uniformity hypothesis, we can answer many questions concerning how countable groups, probability measures, the subset relation, and increasing unions interact with universality. For many natural classes of countable Borel equivalence relations, we can also classify exactly which are uniformly universal. We also show the existence of refinements of Martin's ultrafilter on Turing invariant Borel sets to the invariant Borel sets of equivalence relations that are much finer than Turing equivalence. For example, we construct such an ultrafilter for the orbit equivalence relation of the shift action of the free group on countably many generators. These ultrafilters imply a number of structural properties for these equivalence relations.Comment: 61 Page

    A computability theoretic equivalent to Vaught's conjecture

    Full text link
    We prove that, for every theory TT which is given by an Lω1,ω{\mathcal L}_{\omega_1,\omega} sentence, TT has less than 2ℵ02^{\aleph_0} many countable models if and only if we have that, for every X∈2ωX\in 2^\omega on a cone of Turing degrees, every XX-hyperarithmetic model of TT has an XX-computable copy. We also find a concrete description, relative to some oracle, of the Turing-degree spectra of all the models of a counterexample to Vaught's conjecture

    The complexity of classification problems for models of arithmetic

    Full text link
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.Comment: 15 page
    • …
    corecore