315 research outputs found

    Dynamic p-enrichment schemes for multicomponent reactive flows

    Full text link
    We present a family of p-enrichment schemes. These schemes may be separated into two basic classes: the first, called \emph{fixed tolerance schemes}, rely on setting global scalar tolerances on the local regularity of the solution, and the second, called \emph{dioristic schemes}, rely on time-evolving bounds on the local variation in the solution. Each class of pp-enrichment scheme is further divided into two basic types. The first type (the Type I schemes) enrich along lines of maximal variation, striving to enhance stable solutions in "areas of highest interest." The second type (the Type II schemes) enrich along lines of maximal regularity in order to maximize the stability of the enrichment process. Each of these schemes are tested over a pair of model problems arising in coastal hydrology. The first is a contaminant transport model, which addresses a declinature problem for a contaminant plume with respect to a bay inlet setting. The second is a multicomponent chemically reactive flow model of estuary eutrophication arising in the Gulf of Mexico.Comment: 29 pages, 7 figures, 3 table

    Adaptive computational methods for aerothermal heating analysis

    Get PDF
    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated

    Hierarchical finite element methods for compressible flow problems

    Get PDF
    The thesis is concerned with the introduction of the CG1-DG2 method and the design of an hp-adaptive algorithm in the context of convection-dominated problems in 2D. The CG1-DG2 method combines the continuous Galerkin (CG) method with the discontinuous Galerkin (DG) method by enriching the continuous linear finite element (CG1) space with discontinuous quadratic basis functions. The resulting finite element approximation is continuous at the vertices of the mesh but may be discontinuous across edges. Analysis of the CG1-DG2 discretization in the context of a scalar advection equation shows that the use of upwind-biased convective fluxes leads to an approximation which is stable and exhibits the same convergence rates as the quadratic discontinuous (DG2) method. However, the CG1-DG2 space has fewer degrees of freedom than the DG2 space. In the case of Poisson's equation different strategies known from the DG method can be adopted to approximate the numerical fluxes: the symmetric and non-symmetric interior penalty method as well as the Baumann-Oden method. A priori error estimates for the DG2 method can be shown to hold for the CG1-DG2 approximation as well. Numerical studies confirm that the proposed method is stable and converges at the same rate as the fully discontinuous piecewise-quadratic version. We also present an extension of the CG1-DG2 method to solve the Euler equations and show numerical results which indicate that the CG1-DG2 method gives results similar to those obtained by the DG method. The second part of this thesis presents an hp-adaptive framework for convection-dominated problems. The idea of this algorithm is to divide the mesh in smooth and non-smooth parts, where the smoothness refers to the regularity of the approximated solution. In smooth parts the polynomial degree is increased (p-adaptivity) whereas in non-smooth parts h-adaptivity for linear elements is used. Hereby, a parameter-free regularity estimator is used to determine the smoothness of a function and its gradient by comparing those with reconstructed approximations. In smooth elements the CG1-DG2 method is used. In non- smooth elements a flux-corrected transport scheme is applied and combined with h-adaptivity based on the so-called reference solution approach. Numerical experiments are performed for advection and advection-diffusion equations. Those show the advantage of the hp-adaptive algorithm over pure h-refinement in the context of FCT schemes

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Simplex space-time meshes in thermally coupled two-phase flow simulations of mold filling

    Full text link
    The quality of plastic parts produced through injection molding depends on many factors. Especially during the filling stage, defects such as weld lines, burrs, or insufficient filling can occur. Numerical methods need to be employed to improve product quality by means of predicting and simulating the injection molding process. In the current work, a highly viscous incompressible non-isothermal two-phase flow is simulated, which takes place during the cavity filling. The injected melt exhibits a shear-thinning behavior, which is described by the Carreau-WLF model. Besides that, a novel discretization method is used in the context of 4D simplex space-time grids [2]. This method allows for local temporal refinement in the vicinity of, e.g., the evolving front of the melt [10]. Utilizing such an adaptive refinement can lead to locally improved numerical accuracy while maintaining the highest possible computational efficiency in the remaining of the domain. For demonstration purposes, a set of 2D and 3D benchmark cases, that involve the filling of various cavities with a distributor, are presented.Comment: 14 pages, 11 Figures, 4 Table

    Self-adaptive isogeometric spatial discretisations of the first and second-order forms of the neutron transport equation with dual-weighted residual error measures and diffusion acceleration

    Get PDF
    As implemented in a new modern-Fortran code, NURBS-based isogeometric analysis (IGA) spatial discretisations and self-adaptive mesh refinement (AMR) algorithms are developed in the application to the first-order and second-order forms of the neutron transport equation (NTE). These AMR algorithms are shown to be computationally efficient and numerically accurate when compared to standard approaches. IGA methods are very competitive and offer certain unique advantages over standard finite element methods (FEM), not least of all because the numerical analysis is performed over an exact representation of the underlying geometry, which is generally available in some computer-aided design (CAD) software description. Furthermore, mesh refinement can be performed within the analysis program at run-time, without the need to revisit any ancillary mesh generator. Two error measures are described for the IGA-based AMR algorithms, both of which can be employed in conjunction with energy-dependent meshes. The first heuristically minimises any local contributions to the global discretisation error, as per some appropriate user-prescribed norm. The second employs duality arguments to minimise important local contributions to the error as measured in some quantity of interest; this is commonly known as a dual-weighted residual (DWR) error measure and it demands the solution to both the forward (primal) and the adjoint (dual) NTE. Finally, convergent and stable diffusion acceleration and generalised minimal residual (GMRes) algorithms, compatible with the aforementioned AMR algorithms, are introduced to accelerate the convergence of the within-group self-scattering sources for scattering-dominated problems for the first and second-order forms of the NTE. A variety of verification benchmark problems are analysed to demonstrate the computational performance and efficiency of these acceleration techniques.Open Acces

    A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin

    Get PDF
    Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods.Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by Steppeler et al. (Meteorol Atmos Phys 82:287–301, 2003), this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.The authors would like to thank Prof. Eugenio Oñate (U. Politècnica de Catalunya) for his invitation to submit this review article. They are also thankful to Prof. Dale Durran (U. Washington), Dr. Tommaso Benacchio (Met Office), and Dr. Matias Avila (BSC-CNS) for their comments and corrections, as well as insightful discussion with Sam Watson, Consulting Software Engineer (Exa Corp.) Most of the contribution to this article by the first author stems from his Ph.D. thesis carried out at the Barcelona Supercomputing Center (BSCCNS) and Universitat Politècnica de Catalunya, Spain, supported by a BSC-CNS student grant, by Iberdrola Energías Renovables, and by grant N62909-09-1-4083 of the Office of Naval Research Global. At NPS, SM, AM, MK, and FXG were supported by the Office of Naval Research through program element PE-0602435N, the Air Force Office of Scientific Research through the Computational Mathematics program, and the National Science Foundation (Division of Mathematical Sciences) through program element 121670. The scalability studies of the atmospheric model NUMA that are presented in this paper used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. SM, MK, and AM are grateful to the National Research Council of the National Academies.Peer ReviewedPostprint (author's final draft

    Implicit time integration for high-order compressible flow solvers

    Get PDF
    The application of high-order spectral/hp element discontinuous Galerkin (DG) methods to unsteady compressible flow simulations has gained increasing popularity. However, the time step is seriously restricted when high-order methods are applied to an explicit solver. To eliminate this restriction, an implicit high-order compressible flow solver is developed using DG methods for spatial discretization, diagonally implicit Runge-Kutta methods for temporal discretization, and the Jacobian-free Newton-Krylov method as its nonlinear solver. To accelerate convergence, a block relaxed Jacobi preconditioner is partially matrix-free implementation with a hybrid calculation of analytical and numerical Jacobian.The problem of too many user-defined parameters within the implicit solver is then studied. A systematic framework of adaptive strategies is designed to relax the difficulty of parameter choices. The adaptive time-stepping strategy is based on the observation that in a fixed mesh simulation, when the total error is dominated by the spatial error, further decreasing of temporal error through decreasing the time step cannot help increase accuracy but only slow down the solver. Based on a similar error analysis, an adaptive Newton tolerance is proposed based on the idea that the iterative error should be smaller than the temporal error to guarantee temporal accuracy. An adaptive strategy to update the preconditioner based on the Krylov solver’s convergence state is also discussed. Finally, an adaptive implicit solver is developed that eliminates the need for repeated tests of tunning parameters, whose accuracy and efficiency are verified in various steady/unsteady simulations. An improved shock-capturing strategy is also proposed when the implicit solver is applied to high-speed simulations. Through comparisons among the forms of three popular artificial viscosities, we identify the importance of the density term and add density-related terms on the original bulk-stress based artificial viscosity. To stabilize the simulations involving strong shear layers, we design an extra shearstress based artificial viscosity. The new shock-capturing strategy helps dissipate oscillations at shocks but has negligible dissipation in smooth regions.Open Acces

    Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method

    Get PDF
    We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG) methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which is suited as a control input to a shock capture mechanism. Using an artificial viscosity in the latter role, we obtain a DG scheme for the numerical solution of nonlinear systems of conservation laws. Building on work by Persson and Peraire, we thoroughly justify the detector's design and analyze its performance on a number of benchmark problems. We further explain the scaling and smoothing steps necessary to turn the output of the detector into a local, artificial viscosity. We close by providing an extensive array of numerical tests of the detector in use.Comment: 26 pages, 21 figure
    • …
    corecore