24,315 research outputs found

    Codes and Protocols for Distilling TT, controlled-SS, and Toffoli Gates

    Full text link
    We present several different codes and protocols to distill TT, controlled-SS, and Toffoli (or CCZCCZ) gates. One construction is based on codes that generalize the triorthogonal codes, allowing any of these gates to be induced at the logical level by transversal TT. We present a randomized construction of generalized triorthogonal codes obtaining an asymptotic distillation efficiency Ξ³β†’1\gamma\rightarrow 1. We also present a Reed-Muller based construction of these codes which obtains a worse Ξ³\gamma but performs well at small sizes. Additionally, we present protocols based on checking the stabilizers of CCZCCZ magic states at the logical level by transversal gates applied to codes; these protocols generalize the protocols of 1703.07847. Several examples, including a Reed-Muller code for TT-to-Toffoli distillation, punctured Reed-Muller codes for TT-gate distillation, and some of the check based protocols, require a lower ratio of input gates to output gates than other known protocols at the given order of error correction for the given code size. In particular, we find a 512512 T-gate to 1010 Toffoli gate code with distance 88 as well as triorthogonal codes with parameters [[887,137,5]],[[912,112,6]],[[937,87,7]][[887,137,5]],[[912,112,6]],[[937,87,7]] with very low prefactors in front of the leading order error terms in those codes.Comment: 28 pages. (v2) fixed a part of the proof on random triorthogonal codes, added comments on Clifford circuits for Reed-Muller states (v3) minor chang

    Complementary Sets, Generalized Reed-Muller Codes, and Power Control for OFDM

    Full text link
    The use of error-correcting codes for tight control of the peak-to-mean envelope power ratio (PMEPR) in orthogonal frequency-division multiplexing (OFDM) transmission is considered in this correspondence. By generalizing a result by Paterson, it is shown that each q-phase (q is even) sequence of length 2^m lies in a complementary set of size 2^{k+1}, where k is a nonnegative integer that can be easily determined from the generalized Boolean function associated with the sequence. For small k this result provides a reasonably tight bound for the PMEPR of q-phase sequences of length 2^m. A new 2^h-ary generalization of the classical Reed-Muller code is then used together with the result on complementary sets to derive flexible OFDM coding schemes with low PMEPR. These codes include the codes developed by Davis and Jedwab as a special case. In certain situations the codes in the present correspondence are similar to Paterson's code constructions and often outperform them

    On Algebraic Decoding of qq-ary Reed-Muller and Product-Reed-Solomon Codes

    Full text link
    We consider a list decoding algorithm recently proposed by Pellikaan-Wu \cite{PW2005} for qq-ary Reed-Muller codes RMq(β„“,m,n)\mathcal{RM}_q(\ell, m, n) of length n≀qmn \leq q^m when ℓ≀q\ell \leq q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of τ≀(1βˆ’β„“qmβˆ’1/n)\tau \leq (1 - \sqrt{{\ell q^{m-1}}/{n}}). This is an improvement over the proof using one-point Algebraic-Geometric codes given in \cite{PW2005}. The described algorithm can be adapted to decode Product-Reed-Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and Product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of Ο„β‰€βˆi=1m(1βˆ’ki/q)\tau \leq \prod_{i=1}^m (1 - \sqrt{k_i/q}). This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.Comment: 5 pages, 5 figures, to be presented at 2007 IEEE International Symposium on Information Theory, Nice, France (ISIT 2007

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)
    • …
    corecore