81 research outputs found

    The Rectilinear Steiner Arborescence Problem Is NP-Complete

    Get PDF

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(logd+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d2d \ge 2 dimensions and an O(logn)O(\log n)-approximation algorithm for 2D. We show that an existing O(logn)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Optimal competitiveness for the Rectilinear Steiner Arborescence problem

    Full text link
    We present optimal online algorithms for two related known problems involving Steiner Arborescence, improving both the lower and the upper bounds. One of them is the well studied continuous problem of the {\em Rectilinear Steiner Arborescence} (RSARSA). We improve the lower bound and the upper bound on the competitive ratio for RSARSA from O(logN)O(\log N) and Ω(logN)\Omega(\sqrt{\log N}) to Θ(logNloglogN)\Theta(\frac{\log N}{\log \log N}), where NN is the number of Steiner points. This separates the competitive ratios of RSARSA and the Symetric-RSARSA, two problems for which the bounds of Berman and Coulston is STOC 1997 were identical. The second problem is one of the Multimedia Content Distribution problems presented by Papadimitriou et al. in several papers and Charikar et al. SODA 1998. It can be viewed as the discrete counterparts (or a network counterpart) of RSARSA. For this second problem we present tight bounds also in terms of the network size, in addition to presenting tight bounds in terms of the number of Steiner points (the latter are similar to those we derived for RSARSA)

    Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

    Get PDF
    A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of n points in the Euclidean plane (R^2) and the goal is to find an rectilinear Steiner tree for T of smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t in T is a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of n points in R^2, and a root r in T, the task is to find an rectilinear Steiner arborescence for T, rooted at r of smallest possible total length. In this paper, we give the first subexponential time algorithms for both problems. Our algorithms are deterministic and run in 2^{O(sqrt{n}log n)} time

    The rectilinear Steiner tree problem with given topology and length restrictions

    Full text link
    We consider the problem of embedding the Steiner points of a Steiner tree with given topology into the rectilinear plane. Thereby, the length of the path between a distinguished terminal and each other terminal must not exceed given length restrictions. We want to minimize the total length of the tree. The problem can be formulated as a linear program and therefore it is solvable in polynomial time. In this paper we analyze the structure of feasible embeddings and give a combinatorial polynomial time algorithm for the problem. Our algorithm combines a dynamic programming approach and binary search and relies on the total unimodularity of a matrix appearing in a sub-problem.Comment: 14 page

    The Transitive Minimum Manhattan Subnetwork Problem in 3 Dimensions

    Get PDF
    We consider the Minimum Manhattan Subnetwork (MMSN) Problem which generalizes the already known Minimum Manhattan Network (MMN) Problem: Given a set P of n points in the plane, find shortest rectilinear paths between all pairs of points. These paths form a network, the total length of which has to be minimized. From a graph theoretical point of view, a MMN is a 1-spanner with respect to the L_1 metric. In contrast to the MMN problem, a solution to the MMSN problem does not demand L_1 -shortest paths for all point pairs, but only for a given set R subseteq P imes P of pairs. The complexity status of the MMN problem is still unsolved in geq 2 dimensions, whereas the MMSN was shown to be NP -complete considering general relations R in the plane. We restrict the MMSN problem to transitive relations R_T ({em Transitive} Minimum Manhattan Subnetwork (TMMSN) Problem) and show that the TMMSN problem is Max-SNP -complete with epsilon<frac{1}{8} in 3 dimensions

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where hnh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table
    corecore