6,517 research outputs found

    On reachability in graphs with bounded independence number

    Get PDF
    Abstract. We study the reachability problem for finite directed graphs whose independence number is bounded by some constant k. This problem is a generalisation of the reachability problem for tournaments. We show that the problem is first-order definable for all k. In contrast, the reachability problems for many other types of finite graphs, including dags and trees, are not first-order definable. Also in contrast, first-order definability does not carry over to the infinite version of the problem. We prove that the number of strongly connected components in a graph with bounded independence number can be computed using TC 0 -circuits, but cannot be computed using AC 0 -circuits. We also study the succinct version of the problem and show that it is Π P 2 -complete for all k

    Reachability analysis of reversal-bounded automata on series–parallel graphs

    Get PDF
    Extensions to finite-state automata on strings, such as multi-head automata or multi-counter automata, have been successfully used to encode many infinite-state non-regular verification problems. In this paper, we consider a generalization of automata-theoretic infinite-state verification from strings to labelled series–parallel graphs. We define a model of non-deterministic, 2-way, concurrent automata working on series–parallel graphs and communicating through shared registers on the nodes of the graph. We consider the following verification problem: given a family of series–parallel graphs described by a context-free graph transformation system (GTS), and a concurrent automaton over series–parallel graphs, is some graph generated by the GTS accepted by the automaton? The general problem is undecidable already for (one-way) multi-head automata over strings. We show that a bounded version, where the automata make a fixed number of reversals along the graph and use a fixed number of shared registers is decidable, even though there is no bound on the sizes of series–parallel graphs generated by the GTS. Our decidability result is based on establishing that the number of context switches can be bounded and on an encoding of the computation of bounded concurrent automata that allows us to reduce the reachability problem to the emptiness problem for pushdown automata

    Model Checking Synchronized Products of Infinite Transition Systems

    Full text link
    Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of first-order logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid.Comment: 18 page

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Algorithms and Conditional Lower Bounds for Planning Problems

    Full text link
    We consider planning problems for graphs, Markov decision processes (MDPs), and games on graphs. While graphs represent the most basic planning model, MDPs represent interaction with nature and games on graphs represent interaction with an adversarial environment. We consider two planning problems where there are k different target sets, and the problems are as follows: (a) the coverage problem asks whether there is a plan for each individual target set, and (b) the sequential target reachability problem asks whether the targets can be reached in sequence. For the coverage problem, we present a linear-time algorithm for graphs and quadratic conditional lower bound for MDPs and games on graphs. For the sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our results with conditional lower bounds establish (i) model-separation results showing that for the coverage problem MDPs and games on graphs are harder than graphs and for the sequential reachability problem games on graphs are harder than MDPs and graphs; (ii) objective-separation results showing that for MDPs the coverage problem is harder than the sequential target problem.Comment: Accepted at ICAPS'1

    Pushdown Control-Flow Analysis of Higher-Order Programs

    Full text link
    Context-free approaches to static analysis gain precision over classical approaches by perfectly matching returns to call sites---a property that eliminates spurious interprocedural paths. Vardoulakis and Shivers's recent formulation of CFA2 showed that it is possible (if expensive) to apply context-free methods to higher-order languages and gain the same boost in precision achieved over first-order programs. To this young body of work on context-free analysis of higher-order programs, we contribute a pushdown control-flow analysis framework, which we derive as an abstract interpretation of a CESK machine with an unbounded stack. One instantiation of this framework marks the first polyvariant pushdown analysis of higher-order programs; another marks the first polynomial-time analysis. In the end, we arrive at a framework for control-flow analysis that can efficiently compute pushdown generalizations of classical control-flow analyses.Comment: The 2010 Workshop on Scheme and Functional Programmin
    • …
    corecore