7,122 research outputs found

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature

    ARTIFICIAL INTELLIGENCE DIALECTS OF THE BAYESIAN BELIEF REVISION LANGUAGE

    Get PDF
    Rule-based expert systems must deal with uncertain data, subjective expert opinions, and inaccurate decision rules. Computer scientists and psychologists have proposed and implemented a number of belief languages widely used in applied systems, and their normative validity is clearly an important question, both on practical as well on theoretical grounds. Several well-know belief languages are reviewed, and both previous work and new insights into their Bayesian interpretations are presented. In particular, the authors focus on three alternative belief-update models the certainty factors calculus, Dempster-Shafer simple support functions, and the descriptive contrast/inertia model. Important "dialectsâ of these languages are shown to be isomorphic to each other and to a special case of Bayesian inference. Parts of this analysis were carried out by other authors; these results were extended and consolidated using an analytic technique designed to study the kinship of belief languages in general.Information Systems Working Papers Serie
    corecore