43,287 research outputs found

    CODE: description language for wireless collaborating objects

    Get PDF
    This paper introduces CODE, a Description Language for Wireless Collaborating Objects (WCO), with the specific aim of enabling service management in smart environments. WCO extend the traditional model of wireless sensor networks by transferring additional intelligence and responsibility from the gateway level to the network. WCO are able to offer complex services based on cooperation among sensor nodes. CODE provides the vocabulary for describing the complex services offered by WCO. It enables description of services offered by groups, on-demand services, service interface and sub-services. The proposed methodology is based on XML, widely used for structured information exchange and collaboration. CODE can be directly implemented on the network gateway, while a lightweight binary version is stored and exchanged among sensor nodes. Experimental results show the feasibility and flexibility of using CODE as a basis for service management in WCO

    Querying XML data streams from wireless sensor networks: an evaluation of query engines

    Get PDF
    As the deployment of wireless sensor networks increase and their application domain widens, the opportunity for effective use of XML filtering and streaming query engines is ever more present. XML filtering engines aim to provide efficient real-time querying of streaming XML encoded data. This paper provides a detailed analysis of several such engines, focusing on the technology involved, their capabilities, their support for XPath and their performance. Our experimental evaluation identifies which filtering engine is best suited to process a given query based on its properties. Such metrics are important in establishing the best approach to filtering XML streams on-the-fly

    Interpretable Categorization of Heterogeneous Time Series Data

    Get PDF
    Understanding heterogeneous multivariate time series data is important in many applications ranging from smart homes to aviation. Learning models of heterogeneous multivariate time series that are also human-interpretable is challenging and not adequately addressed by the existing literature. We propose grammar-based decision trees (GBDTs) and an algorithm for learning them. GBDTs extend decision trees with a grammar framework. Logical expressions derived from a context-free grammar are used for branching in place of simple thresholds on attributes. The added expressivity enables support for a wide range of data types while retaining the interpretability of decision trees. In particular, when a grammar based on temporal logic is used, we show that GBDTs can be used for the interpretable classi cation of high-dimensional and heterogeneous time series data. Furthermore, we show how GBDTs can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply GBDTs to analyze the classic Australian Sign Language dataset as well as data on near mid-air collisions (NMACs). The NMAC data comes from aircraft simulations used in the development of the next-generation Airborne Collision Avoidance System (ACAS X).Comment: 9 pages, 5 figures, 2 tables, SIAM International Conference on Data Mining (SDM) 201
    • …
    corecore