1,278 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    Enumeration of points, lines, planes, etc

    Full text link
    One of the earliest results in enumerative combinatorial geometry is the following theorem of de Bruijn and Erd\H{o}s: Every set of points EE in a projective plane determines at least ∣E∣|E| lines, unless all the points are contained in a line. Motzkin and others extended the result to higher dimensions, who showed that every set of points EE in a projective space determines at least ∣E∣|E| hyperplanes, unless all the points are contained in a hyperplane. Let EE be a spanning subset of a dd-dimensional vector space. We show that, in the partially ordered set of subspaces spanned by subsets of EE, there are at least as many (d−k)(d-k)-dimensional subspaces as there are kk-dimensional subspaces, for every kk at most d/2d/2. This confirms the "top-heavy" conjecture of Dowling and Wilson for all matroids realizable over some field. The proof relies on the decomposition theorem package for ℓ\ell-adic intersection complexes.Comment: 18 pages, major revisio
    • …
    corecore