347 research outputs found

    Models of turbulent dissipation regions in the diffuse interstellar medium

    Full text link
    Supersonic turbulence is a large reservoir of suprathermal energy in the interstellar medium. Its dissipation, because it is intermittent in space and time, can deeply modify the chemistry of the gas. We further explore a hybrid method to compute the chemical and thermal evolution of a magnetized dissipative structure, under the energetic constraints provided by the observed properties of turbulence in the cold neutral medium. For the first time, we model a random line of sight by taking into account the relative duration of the bursts with respect to the thermal and chemical relaxation timescales of the gas. The key parameter is the turbulent rate of strain "a" due to the ambient turbulence. With the gas density, it controls the size of the dissipative structures, therefore the strength of the burst. For a large range of rates of strain and densities, the models of turbulent dissipation regions (TDR) reproduce the CH+ column densities observed in the diffuse medium and their correlation with highly excited H2. They do so without producing an excess of CH. As a natural consequence, they reproduce the abundance ratios of HCO+/OH and HCO+/H2O, and their dynamic range of about one order of magnitude observed in diffuse gas. Large C2H and CO abundances, also related to those of HCO+, are another outcome of the TDR models that compare well with observed values. The abundances and column densities computed for CN, HCN and HNC are one order of magnitude above PDR model predictions, although still significantly smaller than observed values

    Measurement of two-halo neutron transfer reaction p(11^{11}Li,9^{9}Li)t at 3AA MeV

    Get PDF
    The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time at an incident energy of 3AA MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the \nuc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different \nuc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter

    CO/H2 Abundance Ratio ~ 10^{-4} in a Protoplanetary Disk

    Full text link
    The relative abundances of atomic and molecular species in planet-forming disks around young stars provide important constraints on photochemical disk models and provide a baseline for calculating disk masses from measurements of trace species. A knowledge of absolute abundances, those relative to molecular hydrogen (H2), are challenging because of the weak rovibrational transition ladder of H2_{2} and the inability to spatially resolve different emission components within the circumstellar environment. To address both of these issues, we present new contemporaneous measurements of CO and H2 absorption through the "warm molecular layer" of the protoplanetary disk around the Classical T Tauri Star RW Aurigae A. We use a newly commissioned observing mode of the Hubble Space Telescope-Cosmic Origins Spectrograph to detect warm H2 absorption in this region for the first time. An analysis of the emission and absorption spectrum of RW Aur shows components from the accretion region near the stellar photosphere, the molecular disk, and several outflow components. The warm H2 and CO absorption lines are consistent with a disk origin. We model the 1092-1117A spectrum of RW Aur to derive log10 N(H2)~=~19.900.22+0.33^{+0.33}_{-0.22} at Trot_{rot}(H2) ~=~440~+/-~39 K. The CO AA~--~XX bands observed from 1410-1520A are best fit by log10 N(CO)~=~16.1~0.5+0.3^{+0.3}_{-0.5} at Trot_{rot}(CO) ~=~200125+650^{+650}_{-125} K. Combining direct measurements of the HI, H2, and CO column densities, we find a molecular fraction in the warm disk surface of fH2f_{H2}~>=~0.47 and derive a molecular abundance ratio of CO/H2~=~1.61.3+4.7^{+4.7}_{-1.3}~x~104^{-4}, both consistent with canonical interstellar dense cloud values.Comment: ApJ - accepted. 13 pages, 8 figure

    The Dark Molecular Gas

    Full text link
    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H_2 mass. However, a significant H_2 mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas phase carbon resides in C or C+. Here, H_2 self-shields or is shielded by dust from UV photodissociation, where as CO is photodissociated. This H_2 gas is "dark" in molecular transitions because of the absence of CO and other trace molecules, and because H_2 emits so weakly at temperatures 10 K < T < 100 K typical of this molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant (~ 0.3 for average visual extinction through the cloud with mean A_V ~ 8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as mean A_V, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing mean A_V, since relatively more molecular H_2 material lies outside the CO region in this case.Comment: 38 page, 11 figures, Accepted for Publication in ApJ, corrected citation and typo in Appendix

    CO-dark gas and molecular filaments in Milky Way type galaxies

    Get PDF
    We use the moving mesh code AREPO coupled to a time-dependent chemical network to investigate the formation and destruction of molecular gas in simulated spiral galaxies. This allows us to determine the characteristics of the gas that is not traced by CO emission. Our extremely high resolution AREPO simulations allow us to capture the chemical evolution of the disc, without recourse to a parameterised `clumping factor'. We calculate H2 and CO column densities through our simulated disc galaxies, and estimate the CO emission and CO-H2 conversion factor. We find that in conditions akin to those in the local interstellar medium, around 42% of the total molecular mass should be in CO-dark regions, in reasonable agreement with observational estimates. This fraction is almost insensitive to the CO integrated intensity threshold used to discriminate between CO-bright and CO-dark gas, as long as this threshold is less than 10 K km/s. The CO-dark molecular gas primarily resides in extremely long (>100 pc) filaments that are stretched between spiral arms by galactic shear. Only the centres of these filaments are bright in CO, suggesting that filamentary molecular clouds observed in the Milky Way may only be small parts of much larger structures. The CO-dark molecular gas mainly exists in a partially molecular phase which accounts for a significant fraction of the total disc mass budget. The dark gas fraction is higher in simulations with higher ambient UV fields or lower surface densities, implying that external galaxies with these conditions might have a greater proportion of dark gas.Comment: Accepted by MNRA

    Critical angular momentum distributions in collapsars: quiescent periods from accretion state transitions in long gamma-ray bursts

    Full text link
    The rotation rate in pre-supernova cores is an important ingredient which can profoundly affect the post-collapse evolution and associated energy release in supernovae and long gamma ray bursts (LGRBs). Previous work has focused on whether the specific angular momentum is above or below the critical value required for the creation of a centrifugally supported disk around a black hole. Here, we explore the effect of the distribution of angular momentum with radius in the star, and show that qualitative transitions between high and low angular momentum flow, corresponding to high and low luminosity accretion states, can effectively be reflected in the energy output, leading to variability and the possibility of quiescent times in LGRBs.Comment: 22 pages, 6 figures, 2 Tables, accepted for publication in Ap

    Loopy Cuts: Surface-Field Aware Block Decomposition for Hex-Meshing.

    Full text link
    We present a new fully automatic block-decomposition hexahedral meshing algorithm capable of producing high quality meshes that strictly preserve feature curve networks on the input surface and align with an input surface cross-field. We produce all-hex meshes on the vast majority of inputs, and introduce localized non-hex elements only when the surface feature network necessitates those. The input to our framework is a closed surface with a collection of geometric or user-demarcated feature curves and a feature-aligned surface cross-field. Its output is a compact set of blocks whose edges interpolate these features and are loosely aligned with this cross-field. We obtain this block decomposition by cutting the input model using a collection of simple cutting surfaces bounded by closed surface loops. The set of cutting loops spans the input feature curves, ensuring feature preservation, and is obtained using a field-space sampling process. The computed loops are uniformly distributed across the surface, cross orthogonally, and are loosely aligned with the cross-field directions, inducing the desired block decomposition. We validate our method by applying it to a large range of complex inputs and comparing our results to those produced by state-of-the-art alternatives. Contrary to prior approaches, our framework consistently produces high-quality field aligned meshes while strictly preserving geometric or user-specified surface features
    corecore