37 research outputs found

    A two-tiered 2D visual tool for assessing classifier performance

    Get PDF
    In this article, a new kind of 2D tool is proposed, namely ⟨φ δ⟩ diagrams, able to highlight most of the information deemed relevant for classifier building and assessment. In particular, accuracy, bias and break-even points are immediately evident therein. These diagrams come in two different forms: the first is aimed at representing the phenomenon under investigation in a space where the imbalance between negative and positive samples is not taken into account, the second (which is a generalization of the first) is able to visualize relevant information in a space that accounts also for the imbalance. According to a specific design choice, all properties found in the first space hold also in the second. The combined use of φ and δ can give important information to researchers involved in the activity of building intelligent systems, in particular for classifier performance assessment and feature ranking/selection

    Evaluation of Performance Measures for Classifiers Comparison

    Full text link
    The selection of the best classification algorithm for a given dataset is a very widespread problem, occuring each time one has to choose a classifier to solve a real-world problem. It is also a complex task with many important methodological decisions to make. Among those, one of the most crucial is the choice of an appropriate measure in order to properly assess the classification performance and rank the algorithms. In this article, we focus on this specific task. We present the most popular measures and compare their behavior through discrimination plots. We then discuss their properties from a more theoretical perspective. It turns out several of them are equivalent for classifiers comparison purposes. Futhermore. they can also lead to interpretation problems. Among the numerous measures proposed over the years, it appears that the classical overall success rate and marginal rates are the more suitable for classifier comparison task

    Threshold Choice Methods: the Missing Link

    Full text link
    Many performance metrics have been introduced for the evaluation of classification performance, with different origins and niches of application: accuracy, macro-accuracy, area under the ROC curve, the ROC convex hull, the absolute error, and the Brier score (with its decomposition into refinement and calibration). One way of understanding the relation among some of these metrics is the use of variable operating conditions (either in the form of misclassification costs or class proportions). Thus, a metric may correspond to some expected loss over a range of operating conditions. One dimension for the analysis has been precisely the distribution we take for this range of operating conditions, leading to some important connections in the area of proper scoring rules. However, we show that there is another dimension which has not received attention in the analysis of performance metrics. This new dimension is given by the decision rule, which is typically implemented as a threshold choice method when using scoring models. In this paper, we explore many old and new threshold choice methods: fixed, score-uniform, score-driven, rate-driven and optimal, among others. By calculating the loss of these methods for a uniform range of operating conditions we get the 0-1 loss, the absolute error, the Brier score (mean squared error), the AUC and the refinement loss respectively. This provides a comprehensive view of performance metrics as well as a systematic approach to loss minimisation, namely: take a model, apply several threshold choice methods consistent with the information which is (and will be) available about the operating condition, and compare their expected losses. In order to assist in this procedure we also derive several connections between the aforementioned performance metrics, and we highlight the role of calibration in choosing the threshold choice method

    Data Mining Techniques for Fraud Detection

    Get PDF
    The paper presents application of data mining techniques to fraud analysis. We present some classification and prediction data mining techniques which we consider important to handle fraud detection. There exist a number of data mining algorithms and we present statistics-based algorithm, decision tree-based algorithm and rule-based algorithm. We present Bayesian classification model to detect fraud in automobile insurance. NaĂŻve Bayesian visualization is selected to analyze and interpret the classifier predictions. We illustrate how ROC curves can be deployed for model assessment in order to provide a more intuitive analysis of the models. Keywords: Data Mining, Decision Tree, Bayesian Network, ROC Curve, Confusion Matri

    Data Mining Techniques in Fraud Detection

    Get PDF
    The paper presents application of data mining techniques to fraud analysis. We present some classification and prediction data mining techniques which we consider important to handle fraud detection. There exist a number of data mining algorithms and we present statistics-based algorithm, decision treebased algorithm and rule-based algorithm. We present Bayesian classification model to detect fraud in automobile insurance. NaĂŻve Bayesian visualization is selected to analyze and interpret the classifier predictions. We illustrate how ROC curves can be deployed for model assessment in order to provide a more intuitive analysis of the models
    corecore